opm-simulators/opm/autodiff/NewtonIterationBlackoilInterleaved.cpp
Atgeirr Flø Rasmussen a3d115ff22 Add (disabled) parallel version.
Disabled because the constructPreconditionerAndSolve() method does
not have a way currently to construct a parallel preconditioner.
2015-06-19 10:53:33 +02:00

230 lines
7.9 KiB
C++

/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
Copyright 2015 Statoil AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/DuneMatrix.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
#include <opm/autodiff/NewtonIterationUtilities.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/utility/Exceptions.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#if HAVE_UMFPACK
#include <Eigen/UmfPackSupport>
#else
#include <Eigen/SparseLU>
#endif
namespace Opm
{
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
/// Construct a system solver.
NewtonIterationBlackoilInterleaved::NewtonIterationBlackoilInterleaved(const parameter::ParameterGroup& param,
const boost::any& parallelInformation)
: iterations_( 0 ),
parallelInformation_(parallelInformation),
newton_use_gmres_( param.getDefault("newton_use_gmres", false ) ),
linear_solver_reduction_( param.getDefault("linear_solver_reduction", 1e-2 ) ),
linear_solver_maxiter_( param.getDefault("linear_solver_maxiter", 50 ) ),
linear_solver_restart_( param.getDefault("linear_solver_restart", 40 ) ),
linear_solver_verbosity_( param.getDefault("linear_solver_verbosity", 0 ))
{
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
NewtonIterationBlackoilInterleaved::SolutionVector
NewtonIterationBlackoilInterleaved::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
// Build the vector of equations.
const int np = residual.material_balance_eq.size();
std::vector<ADB> eqs;
eqs.reserve(np + 2);
for (int phase = 0; phase < np; ++phase) {
eqs.push_back(residual.material_balance_eq[phase]);
}
// check if wells are present
const bool hasWells = residual.well_flux_eq.size() > 0 ;
std::vector<ADB> elim_eqs;
if( hasWells )
{
eqs.push_back(residual.well_flux_eq);
eqs.push_back(residual.well_eq);
// Eliminate the well-related unknowns, and corresponding equations.
elim_eqs.reserve(2);
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
assert(int(eqs.size()) == np);
}
// Scale material balance equations.
const double matbalscale[3] = { 1.1169, 1.0031, 0.0031 }; // HACK hardcoded instead of computed.
for (int phase = 0; phase < np; ++phase) {
eqs[phase] = eqs[phase] * matbalscale[phase];
}
// Find sparsity structure as union of basic block sparsity structures,
// corresponding to the jacobians with respect to pressure.
// Use addition to get to the union structure.
Eigen::SparseMatrix<double> structure = eqs[0].derivative()[0];
for (int phase = 0; phase < np; ++phase) {
structure += eqs[phase].derivative()[0];
}
Eigen::SparseMatrix<double, Eigen::RowMajor> s = structure;
// Form modified system.
Eigen::SparseMatrix<double, Eigen::RowMajor> A;
V b;
formEllipticSystem(np, eqs, A, b);
// Create ISTL matrix with interleaved rows and columns (block structured).
assert(np == 3);
Mat istlA(s.rows(), s.cols(), s.nonZeros(), Mat::row_wise);
const int* ia = s.outerIndexPtr();
const int* ja = s.innerIndexPtr();
for (Mat::CreateIterator row = istlA.createbegin(); row != istlA.createend(); ++row) {
int ri = row.index();
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
row.insert(ja[i]);
}
}
const int size = s.rows();
Span span[3] = { Span(size, 1, 0),
Span(size, 1, size),
Span(size, 1, 2*size) };
for (int row = 0; row < size; ++row) {
for (int col_ix = ia[row]; col_ix < ia[row + 1]; ++col_ix) {
const int col = ja[col_ix];
MatrixBlockType block;
for (int p1 = 0; p1 < np; ++p1) {
for (int p2 = 0; p2 < np; ++p2) {
block[p1][p2] = A.coeff(span[p1][row], span[p2][col]);
}
}
istlA[row][col] = block;
}
}
// Solve reduced system.
SolutionVector dx(SolutionVector::Zero(b.size()));
// Right hand side.
Vector istlb(istlA.N());
for (int i = 0; i < size; ++i) {
istlb[i][0] = b(i);
istlb[i][1] = b(size + i);
istlb[i][2] = b(2*size + i);
}
// System solution
Vector x(istlA.M());
x = 0.0;
Dune::InverseOperatorResult result;
// Parallel version is deactivated until we figure out how to do it properly.
#if 0 // HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
typedef Dune::OwnerOverlapCopyCommunication<int,int> Comm;
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
Comm istlComm(info.communicator());
info.copyValuesTo(istlComm.indexSet(), istlComm.remoteIndices(),
size, np);
// Construct operator, scalar product and vectors needed.
typedef Dune::OverlappingSchwarzOperator<Mat,Vector,Vector,Comm> Operator;
Operator opA(istlA, istlComm);
constructPreconditionerAndSolve<Dune::SolverCategory::overlapping>(opA, x, istlb, istlComm, result);
}
else
#endif
{
// Construct operator, scalar product and vectors needed.
typedef Dune::MatrixAdapter<Mat,Vector,Vector> Operator;
Operator opA(istlA);
Dune::Amg::SequentialInformation info;
constructPreconditionerAndSolve(opA, x, istlb, info, result);
}
// store number of iterations
iterations_ = result.iterations;
// Check for failure of linear solver.
if (!result.converged) {
OPM_THROW(LinearSolverProblem, "Convergence failure for linear solver.");
}
// Copy solver output to dx.
for (int i = 0; i < size; ++i) {
dx(i) = x[i][0];
dx(size + i) = x[i][1];
dx(2*size + i) = x[i][2];
}
if ( hasWells ) {
// Compute full solution using the eliminated equations.
// Recovery in inverse order of elimination.
dx = recoverVariable(elim_eqs[1], dx, np);
dx = recoverVariable(elim_eqs[0], dx, np);
}
return dx;
}
const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const
{
return parallelInformation_;
}
} // namespace Opm