opm-simulators/opm/simulators/wells/WellGroupHelpers.cpp
Tor Harald Sandve b931c5ef97 Check if guiderate is violated
If guiderate is violated change to group controll.
Note that a factor 1.01 is added to minimize oscilations.
Fix missing  multiplication with group efficiency when accumulating guiderates
2022-02-17 10:41:43 +01:00

1631 lines
79 KiB
C++

/*
Copyright 2019 Norce.
Copyright 2020 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/input/eclipse/Schedule/Group/GConSump.hpp>
#include <opm/input/eclipse/Schedule/Group/GConSale.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/TargetCalculator.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WellContainer.hpp>
#include <algorithm>
#include <cassert>
#include <set>
#include <stack>
namespace {
Opm::GuideRate::RateVector
getGuideRateVector(const std::vector<double>& rates, const Opm::PhaseUsage& pu)
{
using Opm::BlackoilPhases;
double oilRate = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid])
oilRate = rates[pu.phase_pos[BlackoilPhases::Liquid]];
double gasRate = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour])
gasRate = rates[pu.phase_pos[BlackoilPhases::Vapour]];
double waterRate = 0.0;
if (pu.phase_used[BlackoilPhases::Aqua])
waterRate = rates[pu.phase_pos[BlackoilPhases::Aqua]];
return {oilRate, gasRate, waterRate};
}
double sumWellPhaseRates(bool res_rates,
const Opm::Group& group,
const Opm::Schedule& schedule,
const Opm::WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector)
{
double rate = 0.0;
for (const std::string& groupName : group.groups()) {
const auto& groupTmp = schedule.getGroup(groupName, reportStepIdx);
const auto& gefac = groupTmp.getGroupEfficiencyFactor();
rate += gefac * sumWellPhaseRates(res_rates, groupTmp, schedule, wellState, reportStepIdx, phasePos, injector);
}
for (const std::string& wellName : group.wells()) {
const auto& well_index = wellState.index(wellName);
if (!well_index.has_value())
continue;
if (! wellState.wellIsOwned(well_index.value(), wellName) ) // Only sum once
{
continue;
}
const auto& wellEcl = schedule.getWell(wellName, reportStepIdx);
// only count producers or injectors
if ((wellEcl.isProducer() && injector) || (wellEcl.isInjector() && !injector))
continue;
if (wellEcl.getStatus() == Opm::Well::Status::SHUT)
continue;
double factor = wellEcl.getEfficiencyFactor();
const auto& ws = wellState.well(well_index.value());
if (res_rates) {
const auto& well_rates = ws.reservoir_rates;
if (injector)
rate += factor * well_rates[phasePos];
else
rate -= factor * well_rates[phasePos];
} else {
const auto& well_rates = ws.surface_rates;
if (injector)
rate += factor * well_rates[phasePos];
else
rate -= factor * well_rates[phasePos];
}
}
return rate;
}
} // namespace Anonymous
namespace Opm
{
namespace WellGroupHelpers
{
void setCmodeGroup(const Group& group,
const Schedule& schedule,
const SummaryState& summaryState,
const int reportStepIdx,
WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
setCmodeGroup(schedule.getGroup(groupName, reportStepIdx), schedule, summaryState, reportStepIdx, wellState, group_state);
}
// use NONE as default control
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!group_state.has_injection_control(group.name(), phase)) {
group_state.injection_control(group.name(), phase, Group::InjectionCMode::NONE);
}
}
if (!group_state.has_production_control(group.name())) {
group_state.production_control(group.name(), Group::ProductionCMode::NONE);
}
const auto& events = schedule[reportStepIdx].wellgroup_events();
if (group.isInjectionGroup()
&& events.hasEvent(group.name(), ScheduleEvents::GROUP_INJECTION_UPDATE)) {
for (Phase phase : all) {
if (!group.hasInjectionControl(phase))
continue;
const auto& controls = group.injectionControls(phase, summaryState);
group_state.injection_control(group.name(), phase, controls.cmode);
}
}
if (group.isProductionGroup()
&& events.hasEvent(group.name(), ScheduleEvents::GROUP_PRODUCTION_UPDATE)) {
const auto controls = group.productionControls(summaryState);
group_state.production_control(group.name(), controls.cmode);
}
if (group.has_gpmaint_control(Group::ProductionCMode::RESV)) {
group_state.production_control(group.name(), Group::ProductionCMode::RESV);
}
for (Phase phase : all) {
if (group.has_gpmaint_control(phase, Group::InjectionCMode::RATE)) {
group_state.injection_control(group.name(), phase, Group::InjectionCMode::RATE);
} else if (group.has_gpmaint_control(phase, Group::InjectionCMode::RESV)) {
group_state.injection_control(group.name(), phase, Group::InjectionCMode::RESV);
}
}
if (schedule[reportStepIdx].gconsale().has(group.name())) {
group_state.injection_control(group.name(), Phase::GAS, Group::InjectionCMode::SALE);
}
}
void accumulateGroupEfficiencyFactor(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
double& factor)
{
factor *= group.getGroupEfficiencyFactor();
if (group.parent() != "FIELD")
accumulateGroupEfficiencyFactor(
schedule.getGroup(group.parent(), reportStepIdx), schedule, reportStepIdx, factor);
}
double sumWellSurfaceRates(const Group& group,
const Schedule& schedule,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector)
{
return sumWellPhaseRates(false, group, schedule, wellState, reportStepIdx, phasePos, injector);
}
double sumWellResRates(const Group& group,
const Schedule& schedule,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector)
{
return sumWellPhaseRates(true, group, schedule, wellState, reportStepIdx, phasePos, injector);
}
double sumSolventRates(const Group& group,
const Schedule& schedule,
const WellState& wellState,
const int reportStepIdx,
const bool injector)
{
double rate = 0.0;
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
const auto& gefac = groupTmp.getGroupEfficiencyFactor();
rate += gefac * sumSolventRates(groupTmp, schedule, wellState, reportStepIdx, injector);
}
for (const std::string& wellName : group.wells()) {
const auto& well_index = wellState.index(wellName);
if (!well_index.has_value())
continue;
if (! wellState.wellIsOwned(well_index.value(), wellName) ) // Only sum once
{
continue;
}
const auto& wellEcl = schedule.getWell(wellName, reportStepIdx);
// only count producers or injectors
if ((wellEcl.isProducer() && injector) || (wellEcl.isInjector() && !injector))
continue;
if (wellEcl.getStatus() == Well::Status::SHUT)
continue;
const auto& ws = wellState.well(well_index.value());
double factor = wellEcl.getEfficiencyFactor();
if (injector)
rate += factor * ws.sum_solvent_rates();
else
rate -= factor * ws.sum_solvent_rates();
}
return rate;
}
void updateGuideRatesForInjectionGroups(const Group& group,
const Schedule& schedule,
const SummaryState& summaryState,
const Opm::PhaseUsage& pu,
const int reportStepIdx,
const WellState& wellState,
const GroupState& group_state,
GuideRate* guideRate,
Opm::DeferredLogger& deferred_logger)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateGuideRatesForInjectionGroups(groupTmp, schedule, summaryState, pu, reportStepIdx, wellState, group_state, guideRate, deferred_logger);
}
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if(!group.hasInjectionControl(phase))
continue;
double guideRateValue = 0.0;
const auto& controls = group.injectionControls(phase, summaryState);
switch (controls.guide_rate_def){
case Group::GuideRateInjTarget::RATE:
break;
case Group::GuideRateInjTarget::VOID:
{
guideRateValue = group_state.injection_vrep_rate(group.name());
break;
}
case Group::GuideRateInjTarget::NETV:
{
guideRateValue = group_state.injection_vrep_rate(group.name());
const std::vector<double>& injRES = group_state.injection_reservoir_rates(group.name());
if (phase != Phase::OIL && pu.phase_used[BlackoilPhases::Liquid])
guideRateValue -= injRES[pu.phase_pos[BlackoilPhases::Liquid]];
if (phase != Phase::GAS && pu.phase_used[BlackoilPhases::Vapour])
guideRateValue -= injRES[pu.phase_pos[BlackoilPhases::Vapour]];
if (phase != Phase::WATER && pu.phase_used[BlackoilPhases::Aqua])
guideRateValue -= injRES[pu.phase_pos[BlackoilPhases::Aqua]];
break;
}
case Group::GuideRateInjTarget::RESV:
OPM_DEFLOG_THROW(std::runtime_error, "GUIDE PHASE RESV not implemented. Group " + group.name(), deferred_logger);
case Group::GuideRateInjTarget::POTN:
break;
case Group::GuideRateInjTarget::NO_GUIDE_RATE:
break;
default:
OPM_DEFLOG_THROW(std::logic_error,
"Invalid GuideRateInjTarget in updateGuideRatesForInjectionGroups",
deferred_logger);
}
const UnitSystem& unit_system = schedule.getUnits();
guideRateValue = unit_system.from_si(UnitSystem::measure::rate, guideRateValue);
guideRate->compute(group.name(), phase, reportStepIdx, guideRateValue);
}
}
void updateGroupTargetReduction(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const bool isInjector,
const PhaseUsage& pu,
const GuideRate& guide_rate,
const WellState& wellState,
GroupState& group_state,
std::vector<double>& groupTargetReduction)
{
const int np = wellState.numPhases();
for (const std::string& subGroupName : group.groups()) {
std::vector<double> subGroupTargetReduction(np, 0.0);
const Group& subGroup = schedule.getGroup(subGroupName, reportStepIdx);
updateGroupTargetReduction(subGroup,
schedule,
reportStepIdx,
isInjector,
pu,
guide_rate,
wellState,
group_state,
subGroupTargetReduction);
const double subGroupEfficiency = subGroup.getGroupEfficiencyFactor();
// accumulate group contribution from sub group
if (isInjector) {
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
bool individual_control = false;
int num_group_controlled_wells = 0;
for (Phase phase : all) {
const Group::InjectionCMode& currentGroupControl
= group_state.injection_control(subGroup.name(), phase);
individual_control = individual_control || (currentGroupControl != Group::InjectionCMode::FLD
&& currentGroupControl != Group::InjectionCMode::NONE);
num_group_controlled_wells
+= groupControlledWells(schedule, wellState, group_state, reportStepIdx, subGroupName, "", !isInjector, phase);
}
if (individual_control || num_group_controlled_wells == 0) {
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase]
+= subGroupEfficiency * sumWellSurfaceRates(subGroup, schedule, wellState, reportStepIdx, phase, isInjector);
}
} else {
// The subgroup may participate in group control.
bool has_guide_rate = false;
for (Phase phase : all) {
has_guide_rate = has_guide_rate || guide_rate.has(subGroupName, phase);
}
if (!has_guide_rate) {
// Accumulate from this subgroup only if no group guide rate is set for it.
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase] += subGroupEfficiency * subGroupTargetReduction[phase];
}
}
}
} else {
const Group::ProductionCMode& currentGroupControl = group_state.production_control(subGroupName);
const bool individual_control = (currentGroupControl != Group::ProductionCMode::FLD
&& currentGroupControl != Group::ProductionCMode::NONE);
const int num_group_controlled_wells
= groupControlledWells(schedule, wellState, group_state, reportStepIdx, subGroupName, "", !isInjector, /*injectionPhaseNotUsed*/Phase::OIL);
if (individual_control || num_group_controlled_wells == 0) {
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase]
+= subGroupEfficiency * sumWellSurfaceRates(subGroup, schedule, wellState, reportStepIdx, phase, isInjector);
}
} else {
// The subgroup may participate in group control.
if (!guide_rate.has(subGroupName)) {
// Accumulate from this subgroup only if no group guide rate is set for it.
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase] += subGroupEfficiency * subGroupTargetReduction[phase];
}
}
}
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (wellTmp.isProducer() && isInjector)
continue;
if (wellTmp.isInjector() && !isInjector)
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
const auto& well_index = wellState.index(wellName);
if (!well_index.has_value())
continue;
if (! wellState.wellIsOwned(well_index.value(), wellName) ) // Only sum once
{
continue;
}
const double efficiency = wellTmp.getEfficiencyFactor();
// add contributino from wells not under group control
const auto& ws = wellState.well(well_index.value());
if (isInjector) {
if (ws.injection_cmode != Well::InjectorCMode::GRUP)
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase] += ws.surface_rates[phase] * efficiency;
}
} else {
if (ws.production_cmode != Well::ProducerCMode::GRUP)
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase] -= ws.surface_rates[phase] * efficiency;
}
}
}
if (isInjector)
group_state.update_injection_reduction_rates(group.name(), groupTargetReduction);
else
group_state.update_production_reduction_rates(group.name(), groupTargetReduction);
}
void updateWellRatesFromGroupTargetScale(const double scale,
const Group& group,
const Schedule& schedule,
const int reportStepIdx,
bool isInjector,
const GroupState& group_state,
WellState& wellState) {
for (const std::string& groupName : group.groups()) {
bool individual_control = false;
if (isInjector) {
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
const Group::InjectionCMode& currentGroupControl
= group_state.injection_control(groupName, phase);
individual_control = individual_control || (currentGroupControl != Group::InjectionCMode::FLD
&& currentGroupControl != Group::InjectionCMode::NONE);
}
} else {
const Group::ProductionCMode& currentGroupControl = group_state.production_control(groupName);
individual_control = (currentGroupControl != Group::ProductionCMode::FLD
&& currentGroupControl != Group::ProductionCMode::NONE);
}
if (!individual_control) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateWellRatesFromGroupTargetScale(scale, groupTmp, schedule, reportStepIdx, isInjector, group_state, wellState);
}
}
const int np = wellState.numPhases();
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (wellTmp.isProducer() && isInjector)
continue;
if (wellTmp.isInjector() && !isInjector)
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
const auto& well_index = wellState.index(wellName);
if (!well_index.has_value())
continue;
if (! wellState.wellIsOwned(well_index.value(), wellName) ) // Only sum once
{
continue;
}
// scale rates
auto& ws = wellState.well(well_index.value());
if (isInjector) {
if (ws.injection_cmode == Well::InjectorCMode::GRUP)
for (int phase = 0; phase < np; phase++) {
ws.surface_rates[phase] *= scale;
}
} else {
if (ws.production_cmode == Well::ProducerCMode::GRUP)
for (int phase = 0; phase < np; phase++) {
ws.surface_rates[phase] *= scale;
}
}
}
}
void updateVREPForGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateVREPForGroups(groupTmp, schedule, reportStepIdx, wellState, group_state);
}
const int np = wellState.numPhases();
double resv = 0.0;
for (int phase = 0; phase < np; ++phase) {
resv += sumWellPhaseRates(true,
group,
schedule,
wellState,
reportStepIdx,
phase,
/*isInjector*/ false);
}
group_state.update_injection_vrep_rate(group.name(), resv);
}
void updateReservoirRatesInjectionGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateReservoirRatesInjectionGroups(groupTmp, schedule, reportStepIdx, wellState, group_state);
}
const int np = wellState.numPhases();
std::vector<double> resv(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
resv[phase] = sumWellPhaseRates(true,
group,
schedule,
wellState,
reportStepIdx,
phase,
/*isInjector*/ true);
}
group_state.update_injection_reservoir_rates(group.name(), resv);
}
void updateSurfaceRatesInjectionGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateSurfaceRatesInjectionGroups(groupTmp, schedule, reportStepIdx, wellState, group_state);
}
const int np = wellState.numPhases();
std::vector<double> rates(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
rates[phase] = sumWellPhaseRates(false,
group,
schedule,
wellState,
reportStepIdx,
phase,
/*isInjector*/ true);
}
group_state.update_injection_surface_rates(group.name(), rates);
}
void updateWellRates(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellState& wellStateNupcol,
WellState& wellState)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateWellRates(groupTmp, schedule, reportStepIdx, wellStateNupcol, wellState);
}
const int np = wellState.numPhases();
for (const std::string& wellName : group.wells()) {
std::vector<double> rates(np, 0.0);
const auto& well_index = wellState.index(wellName);
if (well_index.has_value()) { // the well is found on this node
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
int sign = 1;
// production wellRates are negative. The users of currentWellRates uses the convention in
// opm-common that production and injection rates are positive.
if (!wellTmp.isInjector())
sign = -1;
const auto& ws = wellStateNupcol.well(well_index.value());
for (int phase = 0; phase < np; ++phase) {
rates[phase] = sign * ws.surface_rates[phase];
}
}
wellState.setCurrentWellRates(wellName, rates);
}
}
void updateGroupProductionRates(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateGroupProductionRates(groupTmp, schedule, reportStepIdx, wellState, group_state);
}
const int np = wellState.numPhases();
std::vector<double> rates(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
rates[phase] = sumWellPhaseRates(false, group, schedule, wellState, reportStepIdx, phase, /*isInjector*/ false);
}
group_state.update_production_rates(group.name(), rates);
}
void updateREINForGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const PhaseUsage& pu,
const SummaryState& st,
const WellState& wellState,
GroupState& group_state)
{
const int np = wellState.numPhases();
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateREINForGroups(groupTmp, schedule, reportStepIdx, pu, st, wellState, group_state);
}
std::vector<double> rein(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
rein[phase] = sumWellPhaseRates(false, group, schedule, wellState, reportStepIdx, phase, /*isInjector*/ false);
}
// add import rate and subtract consumption rate for group for gas
if (schedule[reportStepIdx].gconsump().has(group.name())) {
const auto& gconsump = schedule[reportStepIdx].gconsump().get(group.name(), st);
if (pu.phase_used[BlackoilPhases::Vapour]) {
rein[pu.phase_pos[BlackoilPhases::Vapour]] += gconsump.import_rate;
rein[pu.phase_pos[BlackoilPhases::Vapour]] -= gconsump.consumption_rate;
}
}
group_state.update_injection_rein_rates(group.name(), rein);
}
std::map<std::string, double>
computeNetworkPressures(const Opm::Network::ExtNetwork& network,
const WellState& well_state,
const GroupState& group_state,
const VFPProdProperties& vfp_prod_props,
const Schedule& schedule,
const int report_time_step)
{
// TODO: Only dealing with production networks for now.
if (!network.active()) {
return {};
}
// Fixed pressure nodes of the network are the roots of trees.
// Leaf nodes must correspond to groups in the group structure.
// Let us first find all leaf nodes of the network. We also
// create a vector of all nodes, ordered so that a child is
// always after its parent.
std::stack<std::string> children;
std::set<std::string> leaf_nodes;
std::vector<std::string> root_to_child_nodes;
children.push(network.root().name());
while (!children.empty()) {
const auto node = children.top();
children.pop();
root_to_child_nodes.push_back(node);
auto branches = network.downtree_branches(node);
if (branches.empty()) {
leaf_nodes.insert(node);
}
for (const auto& branch : branches) {
children.push(branch.downtree_node());
}
}
assert(children.empty());
// Starting with the leaf nodes of the network, get the flow rates
// from the corresponding groups.
std::map<std::string, std::vector<double>> node_inflows;
for (const auto& node : leaf_nodes) {
node_inflows[node] = group_state.production_rates(node);
// Add the ALQ amounts to the gas rates if requested.
if (network.node(node).add_gas_lift_gas()) {
const auto& group = schedule.getGroup(node, report_time_step);
for (const std::string& wellname : group.wells()) {
const Well& well = schedule.getWell(wellname, report_time_step);
// Here we use the efficiency unconditionally, but if WEFAC item 3
// for the well is false (it defaults to true) then we should NOT use
// the efficiency factor. Fixing this requires not only changing the
// code here, but also:
// - Adding a member to the well for this flag, and setting it in Schedule::handleWEFAC().
// - Making the wells' maximum flows (i.e. not time-averaged by using a efficiency factor)
// available and using those (for wells with WEFAC(3) true only) when accumulating group
// rates, but ONLY for network calculations.
const double efficiency = well.getEfficiencyFactor();
node_inflows[node][BlackoilPhases::Vapour] += well_state.getALQ(wellname) * efficiency;
}
}
}
// Accumulate in the network, towards the roots. Note that a
// root (i.e. fixed pressure node) can still be contributing
// flow towards other nodes in the network, i.e. a node is
// the root of a subtree.
auto child_to_root_nodes = root_to_child_nodes;
std::reverse(child_to_root_nodes.begin(), child_to_root_nodes.end());
for (const auto& node : child_to_root_nodes) {
const auto upbranch = network.uptree_branch(node);
if (upbranch) {
// Add downbranch rates to upbranch.
std::vector<double>& up = node_inflows[(*upbranch).uptree_node()];
const std::vector<double>& down = node_inflows[node];
if (up.empty()) {
up = down;
} else {
assert (up.size() == down.size());
for (size_t ii = 0; ii < up.size(); ++ii) {
up[ii] += down[ii];
}
}
}
}
// Going the other way (from roots to leafs), calculate the pressure
// at each node using VFP tables and rates.
std::map<std::string, double> node_pressures;
for (const auto& node : root_to_child_nodes) {
auto press = network.node(node).terminal_pressure();
if (press) {
node_pressures[node] = *press;
} else {
const auto upbranch = network.uptree_branch(node);
assert(upbranch);
const double up_press = node_pressures[(*upbranch).uptree_node()];
const auto vfp_table = (*upbranch).vfp_table();
if (vfp_table) {
// The rates are here positive, but the VFP code expects the
// convention that production rates are negative, so we must
// take a copy and flip signs.
auto rates = node_inflows[node];
for (auto& r : rates) { r *= -1.0; }
assert(rates.size() == 3);
const double alq = 0.0; // TODO: Do not ignore ALQ
node_pressures[node] = vfp_prod_props.bhp(*vfp_table,
rates[BlackoilPhases::Aqua],
rates[BlackoilPhases::Liquid],
rates[BlackoilPhases::Vapour],
up_press,
alq);
#define EXTRA_DEBUG_NETWORK 0
#if EXTRA_DEBUG_NETWORK
std::ostringstream oss;
oss << "parent: " << (*upbranch).uptree_node() << " child: " << node
<< " rates = [ " << rates[0]*86400 << ", " << rates[1]*86400 << ", " << rates[2]*86400 << " ]"
<< " p(parent) = " << up_press/1e5 << " p(child) = " << node_pressures[node]/1e5 << std::endl;
OpmLog::debug(oss.str());
#endif
} else {
// Table number specified as 9999 in the deck, no pressure loss.
node_pressures[node] = up_press;
}
}
}
return node_pressures;
}
GuideRate::RateVector
getWellRateVector(const WellState& well_state, const PhaseUsage& pu, const std::string& name)
{
return getGuideRateVector(well_state.currentWellRates(name), pu);
}
GuideRate::RateVector
getProductionGroupRateVector(const GroupState& group_state, const PhaseUsage& pu, const std::string& group_name)
{
return getGuideRateVector(group_state.production_rates(group_name), pu);
}
double getGuideRate(const std::string& name,
const Schedule& schedule,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
const GuideRateModel::Target target,
const PhaseUsage& pu)
{
if (schedule.hasWell(name, reportStepIdx)) {
return guideRate->get(name, target, getWellRateVector(wellState, pu, name));
}
if (guideRate->has(name)) {
return guideRate->get(name, target, getProductionGroupRateVector(group_state, pu, name));
}
double totalGuideRate = 0.0;
const Group& group = schedule.getGroup(name, reportStepIdx);
for (const std::string& groupName : group.groups()) {
const Group::ProductionCMode& currentGroupControl = group_state.production_control(groupName);
if (currentGroupControl == Group::ProductionCMode::FLD
|| currentGroupControl == Group::ProductionCMode::NONE) {
// accumulate from sub wells/groups
totalGuideRate += getGuideRate(groupName, schedule, wellState, group_state, reportStepIdx, guideRate, target, pu);
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (wellTmp.isInjector())
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
// Only count wells under group control or the ru
if (!wellState.isProductionGrup(wellName))
continue;
totalGuideRate += guideRate->get(wellName, target, getWellRateVector(wellState, pu, wellName));
}
return totalGuideRate;
}
double getGuideRateInj(const std::string& name,
const Schedule& schedule,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
const GuideRateModel::Target target,
const Phase& injectionPhase,
const PhaseUsage& pu)
{
if (schedule.hasWell(name, reportStepIdx)) {
return guideRate->get(name, target, getWellRateVector(wellState, pu, name));
}
if (guideRate->has(name, injectionPhase)) {
return guideRate->get(name, injectionPhase);
}
double totalGuideRate = 0.0;
const Group& group = schedule.getGroup(name, reportStepIdx);
for (const std::string& groupName : group.groups()) {
const Group::InjectionCMode& currentGroupControl
= group_state.injection_control(groupName, injectionPhase);
if (currentGroupControl == Group::InjectionCMode::FLD
|| currentGroupControl == Group::InjectionCMode::NONE) {
// accumulate from sub wells/groups
totalGuideRate += getGuideRateInj(groupName, schedule, wellState, group_state, reportStepIdx, guideRate, target, injectionPhase, pu);
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (!wellTmp.isInjector())
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
// Only count wells under group control or the ru
if (!wellState.isInjectionGrup(wellName))
continue;
totalGuideRate += guideRate->get(wellName, target, getWellRateVector(wellState, pu, wellName));
}
return totalGuideRate;
}
int groupControlledWells(const Schedule& schedule,
const WellState& well_state,
const GroupState& group_state,
const int report_step,
const std::string& group_name,
const std::string& always_included_child,
const bool is_production_group,
const Phase injection_phase)
{
const Group& group = schedule.getGroup(group_name, report_step);
int num_wells = 0;
for (const std::string& child_group : group.groups()) {
bool included = (child_group == always_included_child);
if (is_production_group) {
const auto ctrl = group_state.production_control(child_group);
included = included || (ctrl == Group::ProductionCMode::FLD) || (ctrl == Group::ProductionCMode::NONE);
} else {
const auto ctrl = group_state.injection_control(child_group, injection_phase);
included = included || (ctrl == Group::InjectionCMode::FLD) || (ctrl == Group::InjectionCMode::NONE);
}
if (included) {
num_wells
+= groupControlledWells(schedule, well_state, group_state, report_step, child_group, always_included_child, is_production_group, injection_phase);
}
}
for (const std::string& child_well : group.wells()) {
bool included = (child_well == always_included_child);
if (is_production_group) {
included = included || well_state.isProductionGrup(child_well);
} else {
included = included || well_state.isInjectionGrup(child_well);
}
if (included) {
++num_wells;
}
}
return num_wells;
}
FractionCalculator::FractionCalculator(const Schedule& schedule,
const WellState& well_state,
const GroupState& group_state,
const int report_step,
const GuideRate* guide_rate,
const GuideRateModel::Target target,
const PhaseUsage& pu,
const bool is_producer,
const Phase injection_phase)
: schedule_(schedule)
, well_state_(well_state)
, group_state_(group_state)
, report_step_(report_step)
, guide_rate_(guide_rate)
, target_(target)
, pu_(pu)
, is_producer_(is_producer)
, injection_phase_(injection_phase)
{
}
double FractionCalculator::fraction(const std::string& name,
const std::string& control_group_name,
const bool always_include_this)
{
double fraction = 1.0;
std::string current = name;
while (current != control_group_name) {
fraction *= localFraction(current, always_include_this ? name : "");
current = parent(current);
}
return fraction;
}
double FractionCalculator::localFraction(const std::string& name, const std::string& always_included_child)
{
const double my_guide_rate = guideRate(name, always_included_child);
const Group& parent_group = schedule_.getGroup(parent(name), report_step_);
const double total_guide_rate = guideRateSum(parent_group, always_included_child);
// the total guide gate is the same as my_guide rate
// the well/group is probably on its own, i.e. return 1
// even is its guide_rate is zero
const double guide_rate_epsilon = 1e-12;
if ( std::abs(my_guide_rate - total_guide_rate) < guide_rate_epsilon )
return 1.0;
assert(total_guide_rate > my_guide_rate);
return my_guide_rate / total_guide_rate;
}
std::string FractionCalculator::parent(const std::string& name)
{
if (schedule_.hasWell(name)) {
return schedule_.getWell(name, report_step_).groupName();
} else {
return schedule_.getGroup(name, report_step_).parent();
}
}
double FractionCalculator::guideRateSum(const Group& group, const std::string& always_included_child)
{
double total_guide_rate = 0.0;
for (const std::string& child_group : group.groups()) {
bool included = (child_group == always_included_child);
if (is_producer_) {
const auto ctrl = this->group_state_.production_control(child_group);
included = included || (ctrl == Group::ProductionCMode::FLD) || (ctrl == Group::ProductionCMode::NONE);
} else {
const auto ctrl = this->group_state_.injection_control(child_group, this->injection_phase_);
included = included || (ctrl == Group::InjectionCMode::FLD) || (ctrl == Group::InjectionCMode::NONE);
}
if (included) {
total_guide_rate += guideRate(child_group, always_included_child);
}
}
for (const std::string& child_well : group.wells()) {
bool included = (child_well == always_included_child);
if (is_producer_) {
included = included || well_state_.isProductionGrup(child_well);
} else {
included = included || well_state_.isInjectionGrup(child_well);
}
if (included) {
total_guide_rate += guideRate(child_well, always_included_child);
}
}
return total_guide_rate;
}
double FractionCalculator::guideRate(const std::string& name, const std::string& always_included_child)
{
if (schedule_.hasWell(name, report_step_)) {
return guide_rate_->get(name, target_, getWellRateVector(well_state_, pu_, name));
} else {
if (groupControlledWells(name, always_included_child) > 0) {
if (is_producer_ && guide_rate_->has(name)) {
return guide_rate_->get(name, target_, getGroupRateVector(name));
} else if (!is_producer_ && guide_rate_->has(name, injection_phase_)) {
return guide_rate_->get(name, injection_phase_);
} else {
// We are a group, with default guide rate.
// Compute guide rate by accumulating our children's guide rates.
const Group& group = schedule_.getGroup(name, report_step_);
const double eff = group.getGroupEfficiencyFactor();
return eff * guideRateSum(group, always_included_child);
}
} else {
// No group-controlled subordinate wells.
return 0.0;
}
}
}
int FractionCalculator::groupControlledWells(const std::string& group_name,
const std::string& always_included_child)
{
return ::Opm::WellGroupHelpers::groupControlledWells(
schedule_, well_state_, this->group_state_, report_step_, group_name, always_included_child, is_producer_, injection_phase_);
}
GuideRate::RateVector FractionCalculator::getGroupRateVector(const std::string& group_name)
{
assert(is_producer_);
return getProductionGroupRateVector(this->group_state_, this->pu_, group_name);
}
std::vector<std::string>
groupChainTopBot(const std::string& bottom, const std::string& top, const Schedule& schedule, const int report_step)
{
// Get initial parent, 'bottom' can be a well or a group.
std::string parent;
if (schedule.hasWell(bottom, report_step)) {
parent = schedule.getWell(bottom, report_step).groupName();
} else {
parent = schedule.getGroup(bottom, report_step).parent();
}
// Build the chain from bottom to top.
std::vector<std::string> chain;
chain.push_back(bottom);
chain.push_back(parent);
while (parent != top) {
parent = schedule.getGroup(parent, report_step).parent();
chain.push_back(parent);
}
assert(chain.back() == top);
// Reverse order and return.
std::reverse(chain.begin(), chain.end());
return chain;
}
std::pair<bool, double> checkGroupConstraintsProd(const std::string& name,
const std::string& parent,
const Group& group,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
const double* rates,
const PhaseUsage& pu,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
const std::vector<double>& resv_coeff,
DeferredLogger& deferred_logger)
{
// When called for a well ('name' is a well name), 'parent'
// will be the name of 'group'. But if we recurse, 'name' and
// 'parent' will stay fixed while 'group' will be higher up
// in the group tree.
// efficiencyfactor is the well efficiency factor for the first group the well is
// part of. Later it is the accumulated factor including the group efficiency factor
// of the child of group.
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD || currentGroupControl == Group::ProductionCMode::NONE) {
// Return if we are not available for parent group.
if (!group.productionGroupControlAvailable()) {
return std::make_pair(false, 1);
}
// Otherwise: check production share of parent's control.
const auto& parentGroup = schedule.getGroup(group.parent(), reportStepIdx);
return checkGroupConstraintsProd(name,
parent,
parentGroup,
wellState,
group_state,
reportStepIdx,
guideRate,
rates,
pu,
efficiencyFactor * group.getGroupEfficiencyFactor(),
schedule,
summaryState,
resv_coeff,
deferred_logger);
}
// This can be false for FLD-controlled groups, we must therefore
// check for FLD first (done above).
if (!group.isProductionGroup()) {
return std::make_pair(false, 1.0);
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// gconsale may adjust the grat target.
// the adjusted rates is send to the targetCalculator
double gratTargetFromSales = 0.0;
if (group_state.has_grat_sales_target(group.name()))
gratTargetFromSales = group_state.grat_sales_target(group.name());
TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales, group.name(), group_state, group.has_gpmaint_control(currentGroupControl));
FractionCalculator fcalc(schedule, wellState, group_state, reportStepIdx, guideRate, tcalc.guideTargetMode(), pu, true, Phase::OIL);
auto localFraction = [&](const std::string& child) { return fcalc.localFraction(child, name); };
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
auto localCurrentRate = [&](const std::string& group_name) {
const std::vector<double>& groupSurfaceRates = group_state.production_rates(group_name);
return tcalc.calcModeRateFromRates(groupSurfaceRates);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
// Assume we have a chain of groups as follows: BOTTOM -> MIDDLE -> TOP.
// Then ...
// TODO finish explanation.
const double current_rate
= -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
const auto chain = groupChainTopBot(name, group.name(), schedule, reportStepIdx);
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
// we need to find out the level where the current well is applied to the local reduction
size_t local_reduction_level = 0;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || guideRate->has(chain[ii])) {
local_reduction_level = ii;
}
}
// check whether guide rate is violated
if (local_reduction_level > 0) {
const auto& guided_group = chain[local_reduction_level];
const double grefficiency
= schedule.getGroup(guided_group, reportStepIdx).getGroupEfficiencyFactor();
const double currentRateFraction = grefficiency * localCurrentRate(guided_group) / (localCurrentRate(chain[local_reduction_level-1]));
const double guiderateFraction = localFraction(guided_group);
// we add a factor here to avoid switching due to numerical instability
const double factor = 1.01;
if (currentRateFraction > (guiderateFraction * factor)) {
return std::make_pair(true, guiderateFraction/currentRateFraction);
}
}
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || guideRate->has(chain[ii])) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
// Add my reduction back at the level where it is included in the local reduction
if (local_reduction_level == ii )
target += current_rate * efficiencyFactor;
for (size_t iii = ii + 1; iii < num_ancestors; ++iii) {
// Not final level. Add sub-level reduction back, if
// it was not under individual control and nonzero due to having no group-controlled
// wells. We may need to look several levels down the hierarchy to find groups without
// group control wells
const Group::ProductionCMode& subGroupControl = group_state.production_control(chain[iii]);
const bool individual_control = (subGroupControl != Group::ProductionCMode::FLD
&& subGroupControl != Group::ProductionCMode::NONE);
// The sub group is on individual control. No adjustments needed.
if (individual_control) {
break;
}
// Note that we make this call without setting
// the current well to be always included, because we
// want to know the situation that applied to the
// calculation of reductions.
const int num_gr_ctrl = groupControlledWells(schedule,
wellState,
group_state,
reportStepIdx,
chain[iii],
"",
/*is_producer*/ true,
/*injectionPhaseNotUsed*/ Phase::OIL);
if (num_gr_ctrl == 0) {
// We found a sub wells with no group controlled wells. We now need to adapt the reduction rate
// to reflect what would have happen if the current well under consideration would have been
// under group control. I.e. we first remove the efficient sub_rate from the reduction rate
// (since the reduction rate is removed already from the target we need to add it to the target)
const double sub_efficiency
= schedule.getGroup(chain[iii], reportStepIdx).getGroupEfficiencyFactor();
const double sub_rate = tcalc.calcModeRateFromRates(group_state.production_rates(chain[iii]));
target += sub_efficiency * sub_rate;
// than we remove the local reduction from the target if it does not have a guide rate
if (!guideRate->has(chain[iii])) {
target -= sub_efficiency * localReduction(chain[iii]);
// this local reduction rate may also need adjustments since it may be computed based on the
// assumption that its subgroup dont have a group control wells. I.e we need to move down the
// hierarchy.
} else {
break;
}
}
}
}
target *= localFraction(chain[ii + 1]);
}
// Avoid negative target rates comming from too large local reductions.
const double target_rate = std::max(1e-12, target / efficiencyFactor);
double scale = 1.0;
if (current_rate > 1e-12)
scale = target_rate / current_rate;
return std::make_pair(current_rate > target_rate, scale);
}
std::pair<bool, double> checkGroupConstraintsInj(const std::string& name,
const std::string& parent,
const Group& group,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
const double* rates,
Phase injectionPhase,
const PhaseUsage& pu,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
const std::vector<double>& resv_coeff,
DeferredLogger& deferred_logger)
{
// When called for a well ('name' is a well name), 'parent'
// will be the name of 'group'. But if we recurse, 'name' and
// 'parent' will stay fixed while 'group' will be higher up
// in the group tree.
// efficiencyfactor is the well efficiency factor for the first group the well is
// part of. Later it is the accumulated factor including the group efficiency factor
// of the child of group.
auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase);
if (currentGroupControl == Group::InjectionCMode::FLD || currentGroupControl == Group::InjectionCMode::NONE) {
// Return if we are not available for parent group.
if (!group.injectionGroupControlAvailable(injectionPhase)) {
return std::make_pair(false, 1);
}
// Otherwise: check production share of parent's control.
const auto& parentGroup = schedule.getGroup(group.parent(), reportStepIdx);
return checkGroupConstraintsInj(name,
parent,
parentGroup,
wellState,
group_state,
reportStepIdx,
guideRate,
rates,
injectionPhase,
pu,
efficiencyFactor * group.getGroupEfficiencyFactor(),
schedule,
summaryState,
resv_coeff,
deferred_logger);
}
// This can be false for FLD-controlled groups, we must therefore
// check for FLD first (done above).
if (!group.isInjectionGroup()) {
return std::make_pair(false, 1.0);
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
double sales_target = 0;
if (schedule[reportStepIdx].gconsale().has(group.name())) {
const auto& gconsale = schedule[reportStepIdx].gconsale().get(group.name(), summaryState);
sales_target = gconsale.sales_target;
}
InjectionTargetCalculator tcalc(currentGroupControl, pu, resv_coeff, group.name(), sales_target, group_state, injectionPhase, group.has_gpmaint_control(injectionPhase, currentGroupControl), deferred_logger);
FractionCalculator fcalc(schedule, wellState, group_state, reportStepIdx, guideRate, tcalc.guideTargetMode(), pu, false, injectionPhase);
auto localFraction = [&](const std::string& child) { return fcalc.localFraction(child, name); };
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.injection_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
auto localCurrentRate = [&](const std::string& group_name) {
const std::vector<double>& groupSurfaceRates = group_state.injection_surface_rates(group_name);
return tcalc.calcModeRateFromRates(groupSurfaceRates);
};
const double orig_target = tcalc.groupTarget(group.injectionControls(injectionPhase, summaryState), deferred_logger);
// Assume we have a chain of groups as follows: BOTTOM -> MIDDLE -> TOP.
// Then ...
// TODO finish explanation.
const double current_rate
= tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
const auto chain = groupChainTopBot(name, group.name(), schedule, reportStepIdx);
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
// we need to find out the level where the current well is applied to the local reduction
size_t local_reduction_level = 0;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || guideRate->has(chain[ii], injectionPhase)) {
local_reduction_level = ii;
}
}
// check whether guide rate is violated
if (local_reduction_level > 0) {
const auto& guided_group = chain[local_reduction_level];
const double grefficiency
= schedule.getGroup(guided_group, reportStepIdx).getGroupEfficiencyFactor();
const double currentRateFraction = grefficiency * localCurrentRate(guided_group) / (localCurrentRate(chain[local_reduction_level-1]));
const double guiderateFraction = localFraction(guided_group);
// we add a factor here to avoid switching due to numerical instability
const double factor = 1.01;
if (currentRateFraction > (guiderateFraction * factor)) {
return std::make_pair(true, guiderateFraction/currentRateFraction);
}
}
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || guideRate->has(chain[ii], injectionPhase)) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
// Add my reduction back at the level where it is included in the local reduction
if (local_reduction_level == ii )
target += current_rate * efficiencyFactor;
for (size_t iii = ii + 1; iii < num_ancestors; ++iii) {
// Not final level. Add sub-level reduction back, if
// it was not under individual control and nonzero due to having no group-controlled
// wells. We may need to look several levels down the hierarchy to find groups without
// group control wells
const Group::InjectionCMode& subGroupControl = group_state.injection_control(chain[iii], injectionPhase);
const bool individual_control = (subGroupControl != Group::InjectionCMode::FLD
&& subGroupControl != Group::InjectionCMode::NONE);
// The sub group is on individual control. No adjustments needed.
if (individual_control) {
break;
}
// Note that we make this call without setting
// the current well to be always included, because we
// want to know the situation that applied to the
// calculation of reductions.
const int num_gr_ctrl = groupControlledWells(schedule,
wellState,
group_state,
reportStepIdx,
chain[iii],
"",
/*is_producer*/ false,
injectionPhase);
if (num_gr_ctrl == 0) {
// We found a sub wells with no group controlled wells. We now need to adapt the reduction rate
// to reflect what would have happen if the well under consideration would have been
// under group control. I.e. we first remove the efficient sub_rate from the reduction rate
// (since the reduction rate is removed already from the target we need to add it to the target)
const double sub_efficiency
= schedule.getGroup(chain[iii], reportStepIdx).getGroupEfficiencyFactor();
const double sub_rate
= tcalc.calcModeRateFromRates(group_state.injection_surface_rates(chain[iii]));
target += sub_efficiency * sub_rate;
// than we remove the local reduction from the target if it does not have a guide rate
if (!guideRate->has(chain[iii], injectionPhase)) {
target -= sub_efficiency * localReduction(chain[iii]);
// this local reduction rate may also need adjustments since it may be computed based on the
// assumption that its subgroup dont have group control wells. I.e we need to move down the
// hierarchy.
} else {
break;
}
}
}
}
target *= localFraction(chain[ii + 1]);
}
// Avoid negative target rates comming from too large local reductions.
const double target_rate = std::max(1e-12, target / efficiencyFactor);
double scale = 1.0;
if (current_rate > 1e-12)
scale = target_rate / current_rate;
return std::make_pair(current_rate > target_rate, scale);
}
template <class Comm>
void updateGuideRates(const Group& group,
const Schedule& schedule,
const SummaryState& summary_state,
const PhaseUsage& pu,
const int report_step,
const double sim_time,
WellState& well_state,
const GroupState& group_state,
const Comm& comm,
GuideRate* guide_rate,
std::vector<double>& pot,
Opm::DeferredLogger& deferred_logger)
{
guide_rate->updateGuideRateExpiration(sim_time, report_step);
updateGuideRateForProductionGroups(group, schedule, pu, report_step, sim_time, well_state, group_state, comm, guide_rate, pot);
updateGuideRatesForInjectionGroups(group, schedule, summary_state, pu, report_step, well_state, group_state, guide_rate, deferred_logger);
updateGuideRatesForWells(schedule, pu, report_step, sim_time, well_state, comm, guide_rate);
}
template <class Comm>
void updateGuideRateForProductionGroups(const Group& group,
const Schedule& schedule,
const PhaseUsage& pu,
const int reportStepIdx,
const double& simTime,
WellState& wellState,
const GroupState& group_state,
const Comm& comm,
GuideRate* guideRate,
std::vector<double>& pot)
{
const int np = pu.num_phases;
for (const std::string& groupName : group.groups()) {
std::vector<double> thisPot(np, 0.0);
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
// Note that group effiency factors for groupTmp are applied in updateGuideRateForGroups
updateGuideRateForProductionGroups(groupTmp, schedule, pu, reportStepIdx, simTime, wellState, group_state, comm, guideRate, thisPot);
// accumulate group contribution from sub group unconditionally
const auto currentGroupControl = group_state.production_control(groupName);
if (currentGroupControl != Group::ProductionCMode::FLD
&& currentGroupControl != Group::ProductionCMode::NONE) {
continue;
}
// Apply group efficiency factor for this goup
auto gefac = groupTmp.getGroupEfficiencyFactor();
for (int phase = 0; phase < np; phase++) {
pot[phase] += gefac*thisPot[phase];
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
const auto wefac = wellTmp.getEfficiencyFactor();
if (wellTmp.isInjector())
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
const auto& well_index = wellState.index(wellName);
if (!well_index.has_value()) // the well is not found
continue;
if (! wellState.wellIsOwned(well_index.value(), wellName) ) // Only sum once
{
continue;
}
const auto& ws = wellState.well(well_index.value());
// add contribution from wells unconditionally
for (int phase = 0; phase < np; phase++) {
pot[phase] += wefac * ws.well_potentials[phase];
}
}
std::array<double,3> potentials{};
auto& [oilPot, gasPot, waterPot] = potentials;
if (pu.phase_used[BlackoilPhases::Liquid])
oilPot = pot[pu.phase_pos[BlackoilPhases::Liquid]];
if (pu.phase_used[BlackoilPhases::Vapour])
gasPot = pot[pu.phase_pos[BlackoilPhases::Vapour]];
if (pu.phase_used[BlackoilPhases::Aqua])
waterPot = pot[pu.phase_pos[BlackoilPhases::Aqua]];
comm.sum(potentials.data(), potentials.size());
const UnitSystem& unit_system = schedule.getUnits();
oilPot = unit_system.from_si(UnitSystem::measure::liquid_surface_rate, oilPot);
waterPot = unit_system.from_si(UnitSystem::measure::liquid_surface_rate, waterPot);
gasPot = unit_system.from_si(UnitSystem::measure::gas_surface_rate, gasPot);
guideRate->compute(group.name(), reportStepIdx, simTime, oilPot, gasPot, waterPot);
}
template <class Comm>
void updateGuideRatesForWells(const Schedule& schedule,
const PhaseUsage& pu,
const int reportStepIdx,
const double& simTime,
const WellState& wellState,
const Comm& comm,
GuideRate* guideRate)
{
for (const auto& well : schedule.getWells(reportStepIdx)) {
std::array<double,3> potentials{};
auto& [oilpot, gaspot, waterpot] = potentials;
const auto& well_index = wellState.index(well.name());
if (well_index.has_value() && wellState.wellIsOwned(well_index.value(), well.name()))
{
// the well is found and owned
const auto& ws = wellState.well(well_index.value());
const auto& wpot = ws.well_potentials;
if (pu.phase_used[BlackoilPhases::Liquid] > 0)
oilpot = wpot[pu.phase_pos[BlackoilPhases::Liquid]];
if (pu.phase_used[BlackoilPhases::Vapour] > 0)
gaspot = wpot[pu.phase_pos[BlackoilPhases::Vapour]];
if (pu.phase_used[BlackoilPhases::Aqua] > 0)
waterpot = wpot[pu.phase_pos[BlackoilPhases::Aqua]];
}
comm.sum(potentials.data(), potentials.size());
const UnitSystem& unit_system = schedule.getUnits();
oilpot = unit_system.from_si(UnitSystem::measure::liquid_surface_rate, oilpot);
waterpot = unit_system.from_si(UnitSystem::measure::liquid_surface_rate, waterpot);
gaspot = unit_system.from_si(UnitSystem::measure::gas_surface_rate, gaspot);
guideRate->compute(well.name(), reportStepIdx, simTime, oilpot, gaspot, waterpot);
}
}
#define INSTANCE_WELLGROUP_HELPERS(...) \
template \
void updateGuideRateForProductionGroups<Dune::CollectiveCommunication<__VA_ARGS__>>(const Group& group,\
const Schedule& schedule, \
const PhaseUsage& pu, \
const int reportStepIdx, \
const double& simTime, \
WellState& wellState, \
const GroupState& group_state, \
const Dune::CollectiveCommunication<__VA_ARGS__>& comm, \
GuideRate* guideRate, \
std::vector<double>& pot); \
template \
void updateGuideRatesForWells<Dune::CollectiveCommunication<__VA_ARGS__>>(const Schedule& schedule, \
const PhaseUsage& pu, \
const int reportStepIdx, \
const double& simTime, \
const WellState& wellState, \
const Dune::CollectiveCommunication<__VA_ARGS__>& comm, \
GuideRate* guideRate); \
template \
void updateGuideRates<Dune::CollectiveCommunication<__VA_ARGS__>>(const Group& group, \
const Schedule& schedule, \
const SummaryState& summary_state, \
const PhaseUsage& pu, \
const int report_step, \
const double sim_time, \
WellState& well_state, \
const GroupState& group_state, \
const Dune::CollectiveCommunication<__VA_ARGS__>& comm,\
GuideRate* guide_rate, \
std::vector<double>& pot,\
Opm::DeferredLogger& deferred_logger);
#if HAVE_MPI
INSTANCE_WELLGROUP_HELPERS(MPI_Comm)
#else
INSTANCE_WELLGROUP_HELPERS(Dune::No_Comm)
#endif
} // namespace WellGroupHelpers
} // namespace Opm