mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-24 05:16:27 -06:00
405 lines
16 KiB
C++
405 lines
16 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::EclThresholdPressure
|
|
*/
|
|
#ifndef EWOMS_ECL_THRESHOLD_PRESSURE_HH
|
|
#define EWOMS_ECL_THRESHOLD_PRESSURE_HH
|
|
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Grid/GridProperty.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Tables/Eqldims.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/SimulationConfig/SimulationConfig.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/SimulationConfig/ThresholdPressure.hpp>
|
|
|
|
#include <opm/material/common/Exceptions.hpp>
|
|
|
|
#include <dune/grid/common/gridenums.hh>
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <array>
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
|
|
BEGIN_PROPERTIES
|
|
|
|
NEW_PROP_TAG(Simulator);
|
|
NEW_PROP_TAG(Scalar);
|
|
NEW_PROP_TAG(Evaluation);
|
|
NEW_PROP_TAG(ElementContext);
|
|
NEW_PROP_TAG(FluidSystem);
|
|
NEW_PROP_TAG(EnableExperiments);
|
|
|
|
END_PROPERTIES
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
*
|
|
* \brief This class calculates the threshold pressure for grid faces according to the
|
|
* Eclipse Reference Manual.
|
|
*
|
|
* If the difference of the pressure potential between two cells is below the threshold
|
|
* pressure, the pressure potential difference is assumed to be zero, if it is larger
|
|
* than the threshold pressure, it is reduced by the threshold pressure.
|
|
*/
|
|
template <class TypeTag>
|
|
class EclThresholdPressure
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
enum { enableExperiments = GET_PROP_VALUE(TypeTag, EnableExperiments) };
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
|
|
public:
|
|
EclThresholdPressure(const Simulator& simulator)
|
|
: simulator_(simulator)
|
|
{
|
|
enableThresholdPressure_ = false;
|
|
}
|
|
|
|
/*!
|
|
* \brief Actually compute the threshold pressures over a face as a pre-compute step.
|
|
*/
|
|
void finishInit()
|
|
{
|
|
const auto& gridView = simulator_.gridView();
|
|
|
|
unsigned numElements = gridView.size(/*codim=*/0);
|
|
|
|
// this code assumes that the DOFs are the elements. (i.e., an
|
|
// ECFV spatial discretization with TPFA). if you try to use
|
|
// it with something else, you're currently out of luck,
|
|
// sorry!
|
|
assert(simulator_.model().numGridDof() == numElements);
|
|
|
|
const auto& vanguard = simulator_.vanguard();
|
|
const auto& eclState = vanguard.eclState();
|
|
const auto& simConfig = eclState.getSimulationConfig();
|
|
|
|
enableThresholdPressure_ = simConfig.useThresholdPressure();
|
|
if (!enableThresholdPressure_)
|
|
return;
|
|
|
|
numEquilRegions_ = eclState.getTableManager().getEqldims().getNumEquilRegions();
|
|
if (numEquilRegions_ > 0xff) {
|
|
// make sure that the index of an equilibration region can be stored in a
|
|
// single byte
|
|
throw std::runtime_error("The maximum number of supported equilibration regions is 255!");
|
|
}
|
|
|
|
// internalize the data specified using the EQLNUM keyword
|
|
const std::vector<int>& equilRegionData =
|
|
eclState.get3DProperties().getIntGridProperty("EQLNUM").getData();
|
|
elemEquilRegion_.resize(numElements, 0);
|
|
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
|
|
int cartElemIdx = vanguard.cartesianIndex(elemIdx);
|
|
|
|
// ECL uses Fortran-style indices but we want C-style ones!
|
|
elemEquilRegion_[elemIdx] = equilRegionData[cartElemIdx] - 1;
|
|
}
|
|
|
|
/*
|
|
If this is a restart run the ThresholdPressure object will be active,
|
|
but it will *not* be properly initialized with numerical values. The
|
|
values must instead come from the THPRES vector in the restart file.
|
|
*/
|
|
if (simConfig.getThresholdPressure().restart())
|
|
return;
|
|
|
|
// allocate the array which specifies the threshold pressures
|
|
thpres_.resize(numEquilRegions_*numEquilRegions_, 0.0);
|
|
thpresDefault_.resize(numEquilRegions_*numEquilRegions_, 0.0);
|
|
|
|
computeDefaultThresholdPressures_();
|
|
applyExplicitThresholdPressures_();
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the theshold pressure [Pa] for the intersection between two elements.
|
|
*
|
|
* This is tailor made for the E100 threshold pressure mechanism and it is thus quite
|
|
* a hack: First of all threshold pressures in general are unphysical, and second,
|
|
* they should be different for the fluid phase but are not. Anyway, this seems to be
|
|
* E100's way of doing things, so we do it the same way.
|
|
*/
|
|
Scalar thresholdPressure(int elem1Idx, int elem2Idx) const
|
|
{
|
|
if (!enableThresholdPressure_)
|
|
return 0.0;
|
|
|
|
if (enableExperiments) {
|
|
// threshold pressure accross faults
|
|
if (!thpresftValues_.empty()) {
|
|
const auto& vanguard = simulator_.vanguard();
|
|
int cartElem1Idx = vanguard.cartesianIndex(elem1Idx);
|
|
int cartElem2Idx = vanguard.cartesianIndex(elem2Idx);
|
|
|
|
assert(0 <= cartElem1Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem1Idx);
|
|
assert(0 <= cartElem2Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem2Idx);
|
|
|
|
int fault1Idx = cartElemFaultIdx_[cartElem1Idx];
|
|
int fault2Idx = cartElemFaultIdx_[cartElem2Idx];
|
|
if (fault1Idx != -1 && fault1Idx == fault2Idx)
|
|
// inside a fault there's no threshold pressure, even accross EQUIL
|
|
// regions.
|
|
return 0.0;
|
|
if (fault1Idx != fault2Idx) {
|
|
// TODO: which value if a cell is part of multiple faults? we take
|
|
// the maximum here.
|
|
Scalar val1 = (fault1Idx >= 0) ? thpresftValues_[fault1Idx] : 0.0;
|
|
Scalar val2 = (fault2Idx >= 0) ? thpresftValues_[fault2Idx] : 0.0;
|
|
return std::max(val1, val2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// threshold pressure accross EQUIL regions
|
|
unsigned short equilRegion1Idx = elemEquilRegion_[elem1Idx];
|
|
unsigned short equilRegion2Idx = elemEquilRegion_[elem2Idx];
|
|
|
|
if (equilRegion1Idx == equilRegion2Idx)
|
|
return 0.0;
|
|
|
|
return thpres_[equilRegion1Idx*numEquilRegions_ + equilRegion2Idx];
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the raw array with the threshold pressures
|
|
*
|
|
* This is used for the restart capability.
|
|
*/
|
|
const std::vector<Scalar>& data() const
|
|
{ return thpres_; }
|
|
|
|
/*!
|
|
* \brief Set the threshold pressures from a raw array
|
|
*
|
|
* This is used for the restart capability.
|
|
*/
|
|
void setFromRestart(const std::vector<Scalar>& values)
|
|
{ thpres_ = values; }
|
|
|
|
private:
|
|
// compute the defaults of the threshold pressures using the initial condition
|
|
void computeDefaultThresholdPressures_()
|
|
{
|
|
const auto& vanguard = simulator_.vanguard();
|
|
const auto& gridView = vanguard.gridView();
|
|
|
|
typedef Opm::MathToolbox<Evaluation> Toolbox;
|
|
// loop over the whole grid and compute the maximum gravity adjusted pressure
|
|
// difference between two EQUIL regions.
|
|
auto elemIt = gridView.template begin</*codim=*/ 0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
|
|
ElementContext elemCtx(simulator_);
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
elemCtx.updateAll(elem);
|
|
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
|
|
|
|
for (unsigned scvfIdx = 0; scvfIdx < stencil.numInteriorFaces(); ++ scvfIdx) {
|
|
const auto& face = stencil.interiorFace(scvfIdx);
|
|
|
|
unsigned i = face.interiorIndex();
|
|
unsigned j = face.exteriorIndex();
|
|
|
|
unsigned insideElemIdx = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
|
|
unsigned outsideElemIdx = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
|
|
|
|
unsigned equilRegionInside = elemEquilRegion_[insideElemIdx];
|
|
unsigned equilRegionOutside = elemEquilRegion_[outsideElemIdx];
|
|
|
|
if (equilRegionInside == equilRegionOutside)
|
|
// the current face is not at the boundary between EQUIL regions!
|
|
continue;
|
|
|
|
// don't include connections with negligible flow
|
|
const Evaluation& trans = simulator_.problem().transmissibility(elemCtx, i, j);
|
|
Scalar faceArea = face.area();
|
|
if (std::abs(faceArea*Opm::getValue(trans)) < 1e-18)
|
|
continue;
|
|
|
|
// determine the maximum difference of the pressure of any phase over the
|
|
// intersection
|
|
Scalar pth = 0.0;
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
|
|
const auto& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0);
|
|
|
|
if (up.mobility(phaseIdx) > 0.0) {
|
|
Scalar phaseVal = Toolbox::value(extQuants.pressureDifference(phaseIdx));
|
|
pth = std::max(pth, std::abs(phaseVal));
|
|
}
|
|
}
|
|
|
|
int offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
|
|
int offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
|
|
|
|
thpresDefault_[offset1] = std::max(thpresDefault_[offset1], pth);
|
|
thpresDefault_[offset2] = std::max(thpresDefault_[offset2], pth);
|
|
}
|
|
}
|
|
|
|
// make sure that the threshold pressures is consistent for parallel
|
|
// runs. (i.e. take the maximum of all processes)
|
|
for (unsigned i = 0; i < thpresDefault_.size(); ++i)
|
|
thpresDefault_[i] = gridView.comm().max(thpresDefault_[i]);
|
|
}
|
|
|
|
// internalize the threshold pressures which where explicitly specified via the
|
|
// THPRES keyword.
|
|
void applyExplicitThresholdPressures_()
|
|
{
|
|
const auto& vanguard = simulator_.vanguard();
|
|
const auto& gridView = vanguard.gridView();
|
|
const auto& elementMapper = simulator_.model().elementMapper();
|
|
const auto& eclState = simulator_.vanguard().eclState();
|
|
const auto& deck = simulator_.vanguard().deck();
|
|
const Opm::SimulationConfig& simConfig = eclState.getSimulationConfig();
|
|
const auto& thpres = simConfig.getThresholdPressure();
|
|
|
|
// set the threshold pressures for all EQUIL region boundaries which have a
|
|
// intersection in the grid
|
|
auto elemIt = gridView.template begin</*codim=*/ 0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
auto isIt = gridView.ibegin(elem);
|
|
const auto& isEndIt = gridView.iend(elem);
|
|
for (; isIt != isEndIt; ++ isIt) {
|
|
// store intersection, this might be costly
|
|
const auto& intersection = *isIt;
|
|
|
|
// ignore boundary intersections for now (TODO?)
|
|
if (intersection.boundary())
|
|
continue;
|
|
|
|
const auto& inside = intersection.inside();
|
|
const auto& outside = intersection.outside();
|
|
|
|
unsigned insideElemIdx = elementMapper.index(inside);
|
|
unsigned outsideElemIdx = elementMapper.index(outside);
|
|
|
|
unsigned equilRegionInside = elemEquilRegion_[insideElemIdx];
|
|
unsigned equilRegionOutside = elemEquilRegion_[outsideElemIdx];
|
|
if (thpres.hasRegionBarrier(equilRegionInside + 1, equilRegionOutside + 1)) {
|
|
Scalar pth = 0.0;
|
|
if (thpres.hasThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1)) {
|
|
// threshold pressure explicitly specified
|
|
pth = thpres.getThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1);
|
|
}
|
|
else {
|
|
// take the threshold pressure from the initial condition
|
|
unsigned offset = equilRegionInside*numEquilRegions_ + equilRegionOutside;
|
|
pth = thpresDefault_[offset];
|
|
}
|
|
|
|
unsigned offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
|
|
unsigned offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
|
|
|
|
thpres_[offset1] = pth;
|
|
thpres_[offset2] = pth;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (enableExperiments) {
|
|
// apply threshold pressures accross faults (experimental!)
|
|
if (deck.hasKeyword("THPRESFT"))
|
|
extractThpresft_(deck.getKeyword("THPRESFT"));
|
|
}
|
|
|
|
}
|
|
|
|
void extractThpresft_(const Opm::DeckKeyword& thpresftKeyword)
|
|
{
|
|
// retrieve the faults collection.
|
|
const Opm::EclipseState& eclState = simulator_.vanguard().eclState();
|
|
const Opm::FaultCollection& faults = eclState.getFaults();
|
|
|
|
// extract the multipliers from the deck keyword
|
|
int numFaults = faults.size();
|
|
int numCartesianElem = eclState.getInputGrid().getCartesianSize();
|
|
thpresftValues_.resize(numFaults, -1.0);
|
|
cartElemFaultIdx_.resize(numCartesianElem, -1);
|
|
for (size_t recordIdx = 0; recordIdx < thpresftKeyword.size(); ++ recordIdx) {
|
|
const Opm::DeckRecord& record = thpresftKeyword.getRecord(recordIdx);
|
|
|
|
const std::string& faultName = record.getItem("FAULT_NAME").getTrimmedString(0);
|
|
Scalar thpresValue = record.getItem("VALUE").getSIDouble(0);
|
|
|
|
for (size_t faultIdx = 0; faultIdx < faults.size(); faultIdx++) {
|
|
auto& fault = faults.getFault(faultIdx);
|
|
if (fault.getName() != faultName)
|
|
continue;
|
|
|
|
thpresftValues_[faultIdx] = thpresValue;
|
|
for (const Opm::FaultFace& face: fault)
|
|
// "face" is a misnomer because the object describes a set of cell
|
|
// indices, but we go with the conventions of the parser here...
|
|
for (size_t cartElemIdx: face)
|
|
cartElemFaultIdx_[cartElemIdx] = faultIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
const Simulator& simulator_;
|
|
|
|
std::vector<Scalar> thpresDefault_;
|
|
std::vector<Scalar> thpres_;
|
|
unsigned numEquilRegions_;
|
|
std::vector<unsigned char> elemEquilRegion_;
|
|
|
|
// threshold pressure accross faults. EXPERIMENTAL!
|
|
std::vector<Scalar> thpresftValues_;
|
|
std::vector<int> cartElemFaultIdx_;
|
|
|
|
bool enableThresholdPressure_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|