opm-simulators/examples/problems/fingerproblem.hh
Andreas Lauser ec4b6c82dd fix most pedantic compiler warnings in the basic infrastructure
i.e., using clang 3.8 to compile the test suite with the following
flags:

```
-Weverything
-Wno-documentation
-Wno-documentation-unknown-command
-Wno-c++98-compat
-Wno-c++98-compat-pedantic
-Wno-undef
-Wno-padded
-Wno-global-constructors
-Wno-exit-time-destructors
-Wno-weak-vtables
-Wno-float-equal
```

should not produce any warnings anymore. In my opinion the only flag
which would produce beneficial warnings is -Wdocumentation. This has
not been fixed in this patch because writing documentation is left for
another day (or, more likely, year).

note that this patch consists of a heavy dose of the OPM_UNUSED macro
and plenty of static_casts (to fix signedness issues). Fixing the
singedness issues were quite a nightmare and the fact that the Dune
API is quite inconsistent in that regard was not exactly helpful. :/

Finally this patch includes quite a few formatting changes (e.g., all
occurences of 'T &t' should be changed to `T& t`) and some fixes for
minor issues which I've found during the excercise.

I've made sure that all unit tests the test suite still pass
successfully and I've made sure that flow_ebos still works for Norne
and that it did not regress w.r.t. performance.

(Note that this patch does not fix compiler warnings triggered `ebos`
and `flow_ebos` but only those caused by the basic infrastructure or
the unit tests.)

v2: fix the warnings that occur if the dune-localfunctions module is
    not available. thanks to [at]atgeirr for testing.
v3: fix dune 2.3 build issue
2016-11-09 14:54:22 +01:00

541 lines
17 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::FingerProblem
*/
#ifndef EWOMS_FINGER_PROBLEM_HH
#define EWOMS_FINGER_PROBLEM_HH
#include <ewoms/io/structuredgridmanager.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/ParkerLenhard.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Air.hpp>
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <ewoms/disc/common/restrictprolong.hh>
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#endif
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/grid/utility/persistentcontainer.hh>
#include <vector>
#include <string>
namespace Ewoms {
template <class TypeTag>
class FingerProblem;
namespace Properties {
NEW_TYPE_TAG(FingerBaseProblem, INHERITS_FROM(StructuredGridManager));
#if HAVE_DUNE_ALUGRID
// use dune-alugrid if available
SET_TYPE_PROP(FingerBaseProblem,
Grid,
Dune::ALUGrid</*dim=*/2,
/*dimWorld=*/2,
Dune::cube,
Dune::nonconforming>);
#endif
// declare the properties used by the finger problem
NEW_PROP_TAG(InitialWaterSaturation);
// Set the problem property
SET_TYPE_PROP(FingerBaseProblem, Problem, Ewoms::FingerProblem<TypeTag>);
// Set the wetting phase
SET_PROP(FingerBaseProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(FingerBaseProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::Air<Scalar> > type;
};
// Set the material Law
SET_PROP(FingerBaseProblem, MaterialLaw)
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
// use the parker-lenhard hysteresis law
typedef Opm::ParkerLenhard<Traits> ParkerLenhard;
typedef ParkerLenhard type;
};
// Write the solutions of individual newton iterations?
SET_BOOL_PROP(FingerBaseProblem, NewtonWriteConvergence, false);
// Use forward differences instead of central differences
SET_INT_PROP(FingerBaseProblem, NumericDifferenceMethod, +1);
// Enable constraints
SET_INT_PROP(FingerBaseProblem, EnableConstraints, true);
// Enable gravity
SET_BOOL_PROP(FingerBaseProblem, EnableGravity, true);
// define the properties specific for the finger problem
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeX, 0.1);
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeY, 0.3);
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeZ, 0.1);
SET_SCALAR_PROP(FingerBaseProblem, InitialWaterSaturation, 0.01);
SET_INT_PROP(FingerBaseProblem, CellsX, 20);
SET_INT_PROP(FingerBaseProblem, CellsY, 70);
SET_INT_PROP(FingerBaseProblem, CellsZ, 1);
// The default for the end time of the simulation
SET_SCALAR_PROP(FingerBaseProblem, EndTime, 215);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(FingerBaseProblem, InitialTimeStepSize, 10);
} // namespace Properties
/*!
* \ingroup TestProblems
*
* \brief Two-phase problem featuring some gravity-driven saturation
* fingers.
*
* The domain of this problem is sized 10cm times 1m and is initially
* dry. Water is then injected at three locations on the top of the
* domain which leads to gravity fingering. The boundary conditions
* used are no-flow for the left and right and top of the domain and
* free-flow at the bottom. This problem uses the Parker-Lenhard
* hystersis model which might lead to non-monotonic saturation in the
* fingers if the right material parameters is chosen and the spatial
* discretization is fine enough.
*/
template <class TypeTag>
class FingerProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
//!\cond SKIP_THIS
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
// number of phases
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
enum { codim = Stencil::Entity::codimension };
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP(TypeTag, MaterialLaw)::ParkerLenhard ParkerLenhard;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef typename GridView :: Grid Grid;
typedef Dune::PersistentContainer< Grid, std::shared_ptr< MaterialLawParams > > MaterialLawParamsContainer;
//!\endcond
public:
typedef CopyRestrictProlong< Grid, MaterialLawParamsContainer > RestrictProlongOperator;
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
FingerProblem(Simulator& simulator)
: ParentType(simulator),
materialParams_( simulator.gridManager().grid(), codim )
{
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \brief \copydoc FvBaseProblem::restrictProlongOperator
*/
RestrictProlongOperator restrictProlongOperator()
{
return RestrictProlongOperator( materialParams_ );
}
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return
std::string("finger") +
"_" + Model::name() +
"_" + Model::discretizationName() +
(this->model().enableGridAdaptation()?"_adaptive":"");
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, InitialWaterSaturation,
"The initial saturation in the domain [] of the "
"wetting phase");
}
/*!
* \copydoc FvBaseProblem::finishInit()
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
temperature_ = 273.15 + 20; // -> 20°C
FluidSystem::init();
// parameters for the Van Genuchten law of the main imbibition
// and the main drainage curves.
micParams_.setVgAlpha(0.0037);
micParams_.setVgN(4.7);
micParams_.finalize();
mdcParams_.setVgAlpha(0.0037);
mdcParams_.setVgN(4.7);
mdcParams_.finalize();
// initialize the material parameter objects of the individual
// finite volumes, resize will resize the container to the number of elements
materialParams_.resize();
for (auto it = materialParams_.begin(),
end = materialParams_.end(); it != end; ++it ) {
std::shared_ptr< MaterialLawParams >& materialParams = *it ;
if( ! materialParams )
{
materialParams.reset( new MaterialLawParams() );
materialParams->setMicParams(&micParams_);
materialParams->setMdcParams(&mdcParams_);
materialParams->setSwr(0.0);
materialParams->setSnr(0.1);
materialParams->finalize();
ParkerLenhard::reset(*materialParams);
}
}
K_ = this->toDimMatrix_(4.6e-10);
setupInitialFluidState_();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
// update the history of the hysteresis law
ElementContext elemCtx(this->simulator());
auto elemIt = this->gridView().template begin<0>();
const auto& elemEndIt = this->gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updateAll( elem );
size_t numDofs = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned scvIdx = 0; scvIdx < numDofs; ++scvIdx)
{
MaterialLawParams& materialParam = materialLawParams( elemCtx, scvIdx, /*timeIdx=*/0 );
const auto& fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
ParkerLenhard::update(materialParam, fs);
}
}
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ return temperature_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ return K_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx)
{
const auto& entity = context.stencil(timeIdx).entity(spaceIdx);
assert(materialParams_[entity]);
return *materialParams_[entity];
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto& entity = context.stencil(timeIdx).entity( spaceIdx );
assert(materialParams_[entity]);
return *materialParams_[entity];
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos) || onLowerBoundary_(pos))
values.setNoFlow();
else {
assert(onUpperBoundary_(pos));
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
}
// override the value for the liquid phase by forced
// imbibition of water on inlet boundary segments
if (onInlet_(pos)) {
values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{
// assign the primary variables
values.assignNaive(initialFluidState_);
}
/*!
* \copydoc FvBaseProblem::constraints
*/
template <class Context>
void constraints(Constraints& constraints, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos) && !onInlet_(pos)) {
constraints.setActive(true);
constraints.assignNaive(initialFluidState_);
}
else if (onLowerBoundary_(pos)) {
constraints.setActive(true);
constraints.assignNaive(initialFluidState_);
}
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate, const Context& /*context*/,
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
if (!onUpperBoundary_(pos))
return false;
Scalar xInject[] = { 0.25, 0.75 };
Scalar injectLen[] = { 0.1, 0.1 };
for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
if (xInject[i] - injectLen[i] / 2 < lambda
&& lambda < xInject[i] + injectLen[i] / 2)
return true;
}
return false;
}
void setupInitialFluidState_()
{
auto& fs = initialFluidState_;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = EWOMS_GET_PARAM(TypeTag, Scalar, InitialWaterSaturation);
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
// set the absolute pressures
Scalar pn = 1e5;
fs.setPressure(nonWettingPhaseIdx, pn);
fs.setPressure(wettingPhaseIdx, pn);
}
DimMatrix K_;
typename MaterialLawParams::VanGenuchtenParams micParams_;
typename MaterialLawParams::VanGenuchtenParams mdcParams_;
MaterialLawParamsContainer materialParams_;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif