mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-24 18:20:22 -06:00
552 lines
17 KiB
C++
552 lines
17 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <algorithm>
|
|
|
|
namespace Opm {
|
|
|
|
/**
|
|
* Helper function that checks if an item exists in a record, and has a
|
|
* non-zero size
|
|
*/
|
|
bool itemValid(DeckRecordConstPtr& record, const char* name) {
|
|
if (record->size() == 0) {
|
|
return false;
|
|
}
|
|
else {
|
|
DeckItemPtr item;
|
|
//TODO: Should we instead here allow the exception to propagate?
|
|
try {
|
|
item = record->getItem(name);
|
|
}
|
|
catch (...) {
|
|
return false;
|
|
}
|
|
|
|
if (item->size() > 0) {
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
VFPProperties::VFPProperties(DeckKeywordConstPtr table) {
|
|
auto iter = table->begin();
|
|
|
|
auto header = (*iter++);
|
|
|
|
assert(itemValid(header, "TABLE"));
|
|
table_num_ = header->getItem("TABLE")->getInt(0);
|
|
|
|
assert(itemValid(header, "DATUM_DEPTH"));
|
|
datum_depth_ = header->getItem("DATUM_DEPTH")->getRawDouble(0);
|
|
|
|
//Rate type
|
|
assert(itemValid(header, "RATE_TYPE"));
|
|
std::string flo_string = header->getItem("RATE_TYPE")->getString(0);
|
|
if (flo_string == "OIL") {
|
|
flo_type_ = FLO_OIL;
|
|
}
|
|
else if (flo_string == "LIQ") {
|
|
flo_type_ = FLO_LIQ;
|
|
}
|
|
else if (flo_string == "GAS") {
|
|
flo_type_ = FLO_GAS;
|
|
}
|
|
else {
|
|
flo_type_ = FLO_INVALID;
|
|
OPM_THROW(std::runtime_error, "Invalid RATE_TYPE string: '" << flo_string << "'");
|
|
}
|
|
|
|
//Water fraction
|
|
assert(itemValid(header, "WFR"));
|
|
std::string wfr_string = header->getItem("WFR")->getString(0);
|
|
if (wfr_string == "WOR") {
|
|
wfr_type_ = WFR_WOR;
|
|
}
|
|
else if (wfr_string == "WCT") {
|
|
wfr_type_ = WFR_WCT;
|
|
}
|
|
else if (wfr_string == "WGR") {
|
|
wfr_type_ = WFR_WGR;
|
|
}
|
|
else {
|
|
wfr_type_ = WFR_INVALID;
|
|
OPM_THROW(std::runtime_error, "Invalid WFR string: '" << wfr_string << "'");
|
|
}
|
|
|
|
//Gas fraction
|
|
assert(itemValid(header, "GFR"));
|
|
std::string gfr_string = header->getItem("GFR")->getString(0);
|
|
if (gfr_string == "GOR") {
|
|
gfr_type_ = GFR_GOR;
|
|
}
|
|
else if (gfr_string == "GLR") {
|
|
gfr_type_ = GFR_GLR;
|
|
}
|
|
else if (gfr_string == "OGR") {
|
|
gfr_type_ = GFR_OGR;
|
|
}
|
|
else {
|
|
gfr_type_ = GFR_INVALID;
|
|
OPM_THROW(std::runtime_error, "Invalid GFR string: '" << gfr_string << "'");
|
|
}
|
|
|
|
//Definition of THP values, must be THP
|
|
if (itemValid(header, "PRESSURE_DEF")) {
|
|
std::string quantity_string = header->getItem("PRESSURE_DEF")->getString(0);
|
|
assert(quantity_string == "THP");
|
|
}
|
|
|
|
//Artificial lift
|
|
if (itemValid(header, "ALQ_DEF")) {
|
|
std::string alq_string = header->getItem("ALQ_DEF")->getString(0);
|
|
if (alq_string == "GRAT") {
|
|
alq_type_ = ALQ_GRAT;
|
|
}
|
|
else if (alq_string == "IGLR") {
|
|
alq_type_ = ALQ_IGLR;
|
|
}
|
|
else if (alq_string == "TGLR") {
|
|
alq_type_ = ALQ_TGLR;
|
|
}
|
|
else if (alq_string == "PUMP") {
|
|
alq_type_ = ALQ_PUMP;
|
|
}
|
|
else if (alq_string == "COMP") {
|
|
alq_type_ = ALQ_COMP;
|
|
}
|
|
else if (alq_string == "BEAN") {
|
|
alq_type_ = ALQ_BEAN;
|
|
}
|
|
else if (alq_string == "UNDEF") {
|
|
alq_type_ = ALQ_UNDEF;
|
|
}
|
|
else {
|
|
alq_type_ = ALQ_INVALID;
|
|
OPM_THROW(std::runtime_error, "Invalid ALQ_DEF string: '" << alq_string << "'");
|
|
}
|
|
}
|
|
else {
|
|
alq_type_ = ALQ_UNDEF;
|
|
}
|
|
|
|
//Units used for this table
|
|
if (itemValid(header, "UNITS")) {
|
|
//TODO: Should check that table unit matches rest of deck.
|
|
std::string unit_string = header->getItem("UNITS")->getString(0);
|
|
if (unit_string == "METRIC") {
|
|
}
|
|
else if (unit_string == "FIELD") {
|
|
}
|
|
else if (unit_string == "LAB") {
|
|
}
|
|
else if (unit_string == "PVT-M") {
|
|
}
|
|
else {
|
|
OPM_THROW(std::runtime_error, "Invalid UNITS string: '" << unit_string << "'");
|
|
}
|
|
}
|
|
else {
|
|
//Do nothing, table implicitly same unit as rest of deck
|
|
}
|
|
|
|
//Quantity in the body of the table
|
|
if (itemValid(header, "BODY_DEF")) {
|
|
std::string body_string = header->getItem("BODY_DEF")->getString(0);
|
|
if (body_string == "TEMP") {
|
|
OPM_THROW(std::logic_error, "Invalid BODY_DEF string: TEMP not supported");
|
|
}
|
|
else if (body_string == "BHP") {
|
|
|
|
}
|
|
else {
|
|
OPM_THROW(std::runtime_error, "Invalid BODY_DEF string: '" << body_string << "'");
|
|
}
|
|
}
|
|
else {
|
|
//Default to BHP
|
|
}
|
|
|
|
|
|
//Get actual rate / flow values
|
|
flo_data_ = (*iter++)->getItem("FLOW_VALUES")->getSIDoubleData();
|
|
|
|
//Get actual tubing head pressure values
|
|
thp_data_ = (*iter++)->getItem("THP_VALUES")->getSIDoubleData();
|
|
|
|
//Get actual water fraction values
|
|
wfr_data_ = (*iter++)->getItem("WFR_VALUES")->getRawDoubleData(); //FIXME: unit
|
|
|
|
//Get actual gas fraction values
|
|
gfr_data_ = (*iter++)->getItem("GFR_VALUES")->getRawDoubleData(); //FIXME: unit
|
|
|
|
//Get actual gas fraction values
|
|
alq_data_ = (*iter++)->getItem("ALQ_VALUES")->getRawDoubleData(); //FIXME: unit
|
|
|
|
//Finally, read the actual table itself.
|
|
size_t nt = thp_data_.size();
|
|
size_t nw = wfr_data_.size();
|
|
size_t ng = gfr_data_.size();
|
|
size_t na = alq_data_.size();
|
|
size_t nf = flo_data_.size();
|
|
extents shape;
|
|
shape[0] = nt;
|
|
shape[1] = nw;
|
|
shape[2] = ng;
|
|
shape[3] = na;
|
|
shape[4] = nf;
|
|
data_.resize(shape);
|
|
|
|
for (; iter!=table->end(); ++iter) {
|
|
//Get indices (subtract 1 to get 0-based index)
|
|
int t = (*iter)->getItem("THP_INDEX")->getInt(0) - 1;
|
|
int w = (*iter)->getItem("WFR_INDEX")->getInt(0) - 1;
|
|
int g = (*iter)->getItem("GFR_INDEX")->getInt(0) - 1;
|
|
int a = (*iter)->getItem("ALQ_INDEX")->getInt(0) - 1;
|
|
|
|
//Rest of values (bottom hole pressure or tubing head temperature) have index of flo value
|
|
const std::vector<double>& bhp_tht = (*iter)->getItem("VALUES")->getRawDoubleData(); //FIXME: unit
|
|
std::copy(bhp_tht.begin(), bhp_tht.end(), &data_[t][w][g][a][0]);
|
|
}
|
|
|
|
check();
|
|
}
|
|
|
|
|
|
VFPProperties::VFPProperties(int table_num,
|
|
double datum_depth,
|
|
FLO_TYPE flo_type,
|
|
WFR_TYPE wfr_type,
|
|
GFR_TYPE gfr_type,
|
|
ALQ_TYPE alq_type,
|
|
const std::vector<double>& flo_data,
|
|
const std::vector<double>& thp_data,
|
|
const std::vector<double>& wfr_data,
|
|
const std::vector<double>& gfr_data,
|
|
const std::vector<double>& alq_data,
|
|
array_type data
|
|
) :
|
|
table_num_(table_num),
|
|
datum_depth_(datum_depth),
|
|
flo_type_(flo_type),
|
|
wfr_type_(wfr_type),
|
|
gfr_type_(gfr_type),
|
|
alq_type_(alq_type),
|
|
flo_data_(flo_data),
|
|
thp_data_(thp_data),
|
|
wfr_data_(wfr_data),
|
|
gfr_data_(gfr_data),
|
|
alq_data_(alq_data),
|
|
data_(data) {
|
|
check();
|
|
}
|
|
|
|
|
|
void VFPProperties::check() {
|
|
//Table number
|
|
assert(table_num_ > 0);
|
|
|
|
//Misc types
|
|
assert(flo_type_ >= FLO_OIL && flo_type_ < FLO_INVALID);
|
|
assert(wfr_type_ >= WFR_WOR && wfr_type_ < WFR_INVALID);
|
|
assert(gfr_type_ >= GFR_GOR && gfr_type_ < GFR_INVALID);
|
|
assert(alq_type_ >= ALQ_GRAT && alq_type_ < ALQ_INVALID);
|
|
|
|
//Data axis size
|
|
assert(flo_data_.size() > 0);
|
|
assert(thp_data_.size() > 0);
|
|
assert(wfr_data_.size() > 0);
|
|
assert(gfr_data_.size() > 0);
|
|
assert(alq_data_.size() > 0);
|
|
|
|
//Data axis sorted?
|
|
assert(is_sorted(flo_data_.begin(), flo_data_.end()));
|
|
assert(is_sorted(thp_data_.begin(), thp_data_.end()));
|
|
assert(is_sorted(wfr_data_.begin(), wfr_data_.end()));
|
|
assert(is_sorted(gfr_data_.begin(), gfr_data_.end()));
|
|
assert(is_sorted(alq_data_.begin(), alq_data_.end()));
|
|
|
|
//Check data size matches axes
|
|
assert(data_.num_dimensions() == 5);
|
|
assert(data_.shape()[0] == thp_data_.size());
|
|
assert(data_.shape()[1] == wfr_data_.size());
|
|
assert(data_.shape()[2] == gfr_data_.size());
|
|
assert(data_.shape()[3] == alq_data_.size());
|
|
assert(data_.shape()[4] == flo_data_.size());
|
|
|
|
//Finally, check that all data is within reasonable ranges, defined to be up-to 1.0e10...
|
|
typedef array_type::size_type size_type;
|
|
for (size_type t=0; t<data_.shape()[0]; ++t) {
|
|
for (size_type w=0; w<data_.shape()[1]; ++w) {
|
|
for (size_type g=0; g<data_.shape()[2]; ++g) {
|
|
for (size_type a=0; a<data_.shape()[3]; ++a) {
|
|
for (size_type f=0; f<data_.shape()[4]; ++f) {
|
|
if (data_[t][w][g][a][f] > 1.0e10) {
|
|
//TODO: Replace with proper log message
|
|
std::cerr << "Too large value encountered in VFPPROD in ["
|
|
<< t << "," << w << "," << g << "," << a << "," << f << "]="
|
|
<< data_[t][w][g][a][f] << std::endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
double VFPProperties::bhp(const double& flo, const double& thp, const double& wfr, const double& gfr, const double& alq) {
|
|
//First, find the values to interpolate between
|
|
auto flo_i = find_interp_data(flo, flo_data_);
|
|
auto thp_i = find_interp_data(thp, thp_data_);
|
|
auto wfr_i = find_interp_data(wfr, wfr_data_);
|
|
auto gfr_i = find_interp_data(gfr, gfr_data_);
|
|
auto alq_i = find_interp_data(alq, alq_data_);
|
|
|
|
//Then perform the interpolation itself
|
|
return interpolate(flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
}
|
|
|
|
VFPProperties::ADB VFPProperties::bhp(const ADB& flo, const ADB& thp, const ADB& wfr, const ADB& gfr, const ADB& alq) {
|
|
const ADB::V& f_v = flo.value();
|
|
const ADB::V& t_v = thp.value();
|
|
const ADB::V& w_v = wfr.value();
|
|
const ADB::V& g_v = gfr.value();
|
|
const ADB::V& a_v = alq.value();
|
|
|
|
const int nw = f_v.size();
|
|
|
|
//Compute the BHP for each well independently
|
|
ADB::V bhp_vals;
|
|
bhp_vals.resize(nw);
|
|
for (int i=0; i<nw; ++i) {
|
|
bhp_vals[i] = bhp(f_v[i], t_v[i], w_v[i], g_v[i], a_v[i]);
|
|
}
|
|
//Create an ADB constant value.
|
|
return ADB::constant(bhp_vals);
|
|
}
|
|
|
|
|
|
|
|
VFPProperties::ADB VFPProperties::bhp(const Wells& wells, const ADB& qs, const ADB& thp, const ADB& alq) {
|
|
const int np = wells.number_of_phases;
|
|
const int nw = wells.number_of_wells;
|
|
|
|
//Short-hands for water / oil / gas phases
|
|
//TODO enable support for two-phase.
|
|
assert(np == 3);
|
|
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
|
|
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
|
|
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
|
|
|
|
ADB flo = getFlo(w, o, g);
|
|
ADB wfr = getWFR(w, o, g);
|
|
ADB gfr = getGFR(w, o, g);
|
|
|
|
//TODO: Check ALQ type here?
|
|
|
|
return bhp(flo, thp, wfr, gfr, alq);
|
|
}
|
|
|
|
|
|
VFPProperties::ADB VFPProperties::getFlo(const ADB& aqua, const ADB& liquid, const ADB& vapour) {
|
|
switch (flo_type_) {
|
|
case FLO_OIL:
|
|
//Oil = liquid phase
|
|
return liquid;
|
|
case FLO_LIQ:
|
|
//Liquid = aqua + liquid phases
|
|
return aqua + liquid;
|
|
case FLO_GAS:
|
|
//Gas = vapor phase
|
|
return vapour;
|
|
case FLO_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << flo_type_ << "'");
|
|
return ADB::null();
|
|
}
|
|
}
|
|
|
|
VFPProperties::ADB VFPProperties::getWFR(const ADB& aqua, const ADB& liquid, const ADB& vapour) {
|
|
switch(wfr_type_) {
|
|
case WFR_WOR:
|
|
//Water-oil ratio = water / oil
|
|
return aqua / liquid;
|
|
case WFR_WCT:
|
|
//Water cut = water / (water + oil + gas)
|
|
return aqua / (aqua + liquid + vapour);
|
|
case WFR_WGR:
|
|
//Water-gas ratio = water / gas
|
|
return aqua / vapour;
|
|
case WFR_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << wfr_type_ << "'");
|
|
return ADB::null();
|
|
}
|
|
}
|
|
|
|
|
|
VFPProperties::ADB VFPProperties::getGFR(const ADB& aqua, const ADB& liquid, const ADB& vapour) {
|
|
switch(gfr_type_) {
|
|
case GFR_GOR:
|
|
// Gas-oil ratio = gas / oil
|
|
return vapour / liquid;
|
|
case GFR_GLR:
|
|
// Gas-liquid ratio = gas / (oil + water)
|
|
return vapour / (liquid + aqua);
|
|
case GFR_OGR:
|
|
// Oil-gas ratio = oil / gas
|
|
return liquid / vapour;
|
|
case GFR_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << flo_type_ << "'");
|
|
return ADB::null();
|
|
}
|
|
}
|
|
|
|
|
|
VFPProperties::InterpData VFPProperties::find_interp_data(const double& value, const std::vector<double>& values) {
|
|
InterpData retval;
|
|
|
|
//First element greater than or equal to value
|
|
//Start with the second element, so that floor_iter does not go out of range
|
|
//Don't access out-of-range, therefore values.end()-1
|
|
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
|
|
|
|
//Find last element smaller than range
|
|
auto floor_iter = ceil_iter-1;
|
|
|
|
//Find the indices
|
|
const int a = floor_iter - values.begin();
|
|
const int b = ceil_iter - values.begin();
|
|
const int max_size = std::max(static_cast<int>(values.size()) - 1, 0);
|
|
|
|
//Clamp indices to range of vector
|
|
retval.ind_[0] = a;
|
|
retval.ind_[1] = std::min(b, max_size);
|
|
|
|
//Find interpolation ratio
|
|
double dist = (*ceil_iter - *floor_iter);
|
|
assert(dist >= 0.0);
|
|
if (dist > 0.0) {
|
|
//Possible source for floating point error here if value and floor are large,
|
|
//but very close to each other
|
|
retval.factor_ = (value-*floor_iter) / dist;
|
|
}
|
|
else {
|
|
retval.factor_ = 1.0;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("unroll-loops")
|
|
#endif
|
|
|
|
double VFPProperties::interpolate(const InterpData& flo_i, const InterpData& thp_i,
|
|
const InterpData& wfr_i, const InterpData& gfr_i, const InterpData& alq_i) {
|
|
double nn[2][2][2][2][2];
|
|
|
|
//Pick out nearest neighbors (nn) to our evaluation point
|
|
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
|
//we copy to (nn) will fit better in cache than the full original table for the
|
|
//interpolation below.
|
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
for (int f=0; f<=1; ++f) {
|
|
//Shorthands for indexing
|
|
const int ti = thp_i.ind_[t];
|
|
const int wi = wfr_i.ind_[w];
|
|
const int gi = gfr_i.ind_[g];
|
|
const int ai = alq_i.ind_[a];
|
|
const int fi = flo_i.ind_[f];
|
|
|
|
//Copy element
|
|
nn[t][w][g][a][f] = data_[ti][wi][gi][ai][fi];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Remove dimensions one by one
|
|
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
|
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
|
// axis, leaving a 1D, problem, etc.
|
|
double tf = flo_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
nn[t][w][g][a][0] = (1.0-tf)*nn[t][w][g][a][0] + tf*nn[t][w][g][a][1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
tf = alq_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
nn[t][w][g][0][0] = (1.0-tf)*nn[t][w][g][0][0] + tf*nn[t][w][g][1][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
tf = gfr_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
nn[t][w][0][0][0] = (1.0-tf)*nn[t][w][0][0][0] + tf*nn[t][w][1][0][0];
|
|
}
|
|
}
|
|
|
|
tf = wfr_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
nn[t][0][0][0][0] = (1.0-tf)*nn[t][0][0][0][0] + tf*nn[t][1][0][0][0];
|
|
}
|
|
|
|
tf = thp_i.factor_;
|
|
return (1.0-tf)*nn[0][0][0][0][0] + tf*nn[1][0][0][0][0];
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC pop_options //unroll loops
|
|
#endif
|
|
|
|
|
|
} //Namespace
|