opm-simulators/opm/simulators/linalg/FlexibleSolver_impl.hpp
hnil f3acfcde0b Adding functions for pressure system manipulation to well models.
Also add well-aware operator and transfer policy.
This will be used for CPR with custom operators.
2022-06-08 17:01:33 +02:00

243 lines
10 KiB
C++

/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2020 Equinor.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED
#define OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED
#include <opm/simulators/linalg/matrixblock.hh>
#include <opm/simulators/linalg/ilufirstelement.hh>
#include <opm/simulators/linalg/FlexibleSolver.hpp>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/umfpack.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/pinfo.hh>
namespace Dune
{
/// Create a sequential solver.
template <class Operator>
FlexibleSolver<Operator>::
FlexibleSolver(Operator& op,
const Opm::PropertyTree& prm,
const std::function<VectorType()>& weightsCalculator,
std::size_t pressureIndex)
{
init(op, Dune::Amg::SequentialInformation(), prm, weightsCalculator,
pressureIndex);
}
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
template <class Operator>
template <class Comm>
FlexibleSolver<Operator>::
FlexibleSolver(Operator& op,
const Comm& comm,
const Opm::PropertyTree& prm,
const std::function<VectorType()>& weightsCalculator,
std::size_t pressureIndex)
{
init(op, comm, prm, weightsCalculator, pressureIndex);
}
template <class Operator>
void
FlexibleSolver<Operator>::
apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res)
{
linsolver_->apply(x, rhs, res);
}
template <class Operator>
void
FlexibleSolver<Operator>::
apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res)
{
linsolver_->apply(x, rhs, reduction, res);
}
/// Access the contained preconditioner.
template <class Operator>
auto
FlexibleSolver<Operator>::
preconditioner() -> AbstractPrecondType&
{
return *preconditioner_;
}
template <class Operator>
Dune::SolverCategory::Category
FlexibleSolver<Operator>::
category() const
{
return linearoperator_for_solver_->category();
}
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
template <class Operator>
template <class Comm>
void
FlexibleSolver<Operator>::
initOpPrecSp(Operator& op,
const Opm::PropertyTree& prm,
const std::function<VectorType()> weightsCalculator,
const Comm& comm,
std::size_t pressureIndex)
{
// Parallel case.
linearoperator_for_solver_ = &op;
auto child = prm.get_child_optional("preconditioner");
preconditioner_ = Opm::PreconditionerFactory<Operator, Comm>::create(op,
child ? *child : Opm::PropertyTree(),
weightsCalculator,
comm,
pressureIndex);
scalarproduct_ = Dune::createScalarProduct<VectorType, Comm>(comm, op.category());
}
template <class Operator>
void
FlexibleSolver<Operator>::
initOpPrecSp(Operator& op,
const Opm::PropertyTree& prm,
const std::function<VectorType()> weightsCalculator,
const Dune::Amg::SequentialInformation&,
std::size_t pressureIndex)
{
// Sequential case.
linearoperator_for_solver_ = &op;
auto child = prm.get_child_optional("preconditioner");
preconditioner_ = Opm::PreconditionerFactory<Operator>::create(op,
child ? *child : Opm::PropertyTree(),
weightsCalculator,
pressureIndex);
scalarproduct_ = std::make_shared<Dune::SeqScalarProduct<VectorType>>();
}
template <class Operator>
void
FlexibleSolver<Operator>::
initSolver(const Opm::PropertyTree& prm, const bool is_iorank)
{
const double tol = prm.get<double>("tol", 1e-2);
const int maxiter = prm.get<int>("maxiter", 200);
const int verbosity = is_iorank ? prm.get<int>("verbosity", 0) : 0;
const std::string solver_type = prm.get<std::string>("solver", "bicgstab");
if (solver_type == "bicgstab") {
linsolver_.reset(new Dune::BiCGSTABSolver<VectorType>(*linearoperator_for_solver_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "loopsolver") {
linsolver_.reset(new Dune::LoopSolver<VectorType>(*linearoperator_for_solver_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "gmres") {
int restart = prm.get<int>("restart", 15);
linsolver_.reset(new Dune::RestartedGMResSolver<VectorType>(*linearoperator_for_solver_,
*scalarproduct_,
*preconditioner_,
tol,
restart, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
#if HAVE_SUITESPARSE_UMFPACK
} else if (solver_type == "umfpack") {
bool dummy = false;
using MatrixType = std::remove_const_t<std::remove_reference_t<decltype(linearoperator_for_solver_->getmat())>>;
linsolver_.reset(new Dune::UMFPack<MatrixType>(linearoperator_for_solver_->getmat(), verbosity, dummy));
#endif
} else {
OPM_THROW(std::invalid_argument, "Properties: Solver " << solver_type << " not known.");
}
}
// Main initialization routine.
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
template <class Operator>
template <class Comm>
void
FlexibleSolver<Operator>::
init(Operator& op,
const Comm& comm,
const Opm::PropertyTree& prm,
const std::function<VectorType()> weightsCalculator,
std::size_t pressureIndex)
{
initOpPrecSp(op, prm, weightsCalculator, comm, pressureIndex);
initSolver(prm, comm.communicator().rank() == 0);
}
} // namespace Dune
// Macros to simplify explicit instantiation of FlexibleSolver for various block sizes.
/*
template <int N>
using BV = Dune::BlockVector<Dune::FieldVector<double, N>>;
template <int N>
using BM = Dune::BCRSMatrix<Dune::FieldMatrix<double, N, N>>;
template <int N>
using OBM = Dune::BCRSMatrix<Opm::MatrixBlock<double, N, N>>;
#if HAVE_MPI
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
// Note: we must instantiate the constructor that is a template.
// This is only needed in the parallel case, since otherwise the Comm type is
// not a template argument but always SequentialInformation.
#define INSTANTIATE_FLEXIBLESOLVER(N) \
template class Dune::FlexibleSolver<BM<N>, BV<N>>; \
template class Dune::FlexibleSolver<OBM<N>, BV<N>>; \
template Dune::FlexibleSolver<BM<N>, BV<N>>::FlexibleSolver(AbstractOperatorType& op, \
const Comm& comm, \
const Opm::PropertyTree& prm, \
const std::function<BV<N>()>& weightsCalculator, \
std::size_t); \
template Dune::FlexibleSolver<OBM<N>, BV<N>>::FlexibleSolver(AbstractOperatorType& op, \
const Comm& comm, \
const Opm::PropertyTree& prm, \
const std::function<BV<N>()>& weightsCalculator, \
std::size_t);
#else // HAVE_MPI
#define INSTANTIATE_FLEXIBLESOLVER(N) \
template class Dune::FlexibleSolver<BM<N>, BV<N>>; \
template class Dune::FlexibleSolver<OBM<N>, BV<N>>;
#endif // HAVE_MPI
*/
#define INSTANTIATE_FLEXIBLESOLVER(N) do(){}
#endif // OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED