mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-30 11:06:55 -06:00
969d8f238d
TODO: The output, fip and restart still uses a mixture of old and new phase indices. This needs to be adressed in future PRs
1527 lines
68 KiB
C++
1527 lines
68 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2015 NTNU
|
|
Copyright 2015, 2016, 2017 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
|
|
|
|
#include <ebos/eclproblem.hh>
|
|
#include <ewoms/common/start.hh>
|
|
|
|
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
|
#include <opm/autodiff/BlackoilWellModel.hpp>
|
|
#include <opm/autodiff/BlackoilDetails.hpp>
|
|
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/simulator/SimulatorReport.hpp>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/core/props/phaseUsageFromDeck.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/parser/eclipse/Units/Units.hpp>
|
|
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
|
|
|
|
#include <opm/autodiff/ISTLSolver.hpp>
|
|
#include <opm/common/data/SimulationDataContainer.hpp>
|
|
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#include <dune/common/parallel/collectivecommunication.hh>
|
|
#include <dune/common/timer.hh>
|
|
#include <dune/common/unused.hh>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
//#include <fstream>
|
|
|
|
|
|
|
|
namespace Ewoms {
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
|
|
SET_BOOL_PROP(EclFlowProblem, DisableWells, true);
|
|
SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
|
|
SET_BOOL_PROP(EclFlowProblem, ExportGlobalTransmissibility, true);
|
|
// default in flow is to formulate the equations in surface volumes
|
|
SET_BOOL_PROP(EclFlowProblem, BlackoilConserveSurfaceVolume, true);
|
|
SET_BOOL_PROP(EclFlowProblem, UseVolumetricResidual, false);
|
|
}}
|
|
|
|
namespace Opm {
|
|
/// A model implementation for three-phase black oil.
|
|
///
|
|
/// The simulator is capable of handling three-phase problems
|
|
/// where gas can be dissolved in oil and vice versa. It
|
|
/// uses an industry-standard TPFA discretization with per-phase
|
|
/// upwind weighting of mobilities.
|
|
template <class TypeTag>
|
|
class BlackoilModelEbos
|
|
{
|
|
public:
|
|
// --------- Types and enums ---------
|
|
typedef BlackoilState ReservoirState;
|
|
typedef WellStateFullyImplicitBlackoil WellState;
|
|
typedef BlackoilModelParameters ModelParameters;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef double Scalar;
|
|
static const int numEq = Indices::numEq;
|
|
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
|
|
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
|
|
static const int solventSaturationIdx = Indices::solventSaturationIdx;
|
|
static const int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
|
|
|
|
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
|
|
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
|
|
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
|
typedef Dune::BlockVector<VectorBlockType> BVector;
|
|
|
|
typedef ISTLSolver< MatrixBlockType, VectorBlockType, Indices::pressureSwitchIdx > ISTLSolverType;
|
|
//typedef typename SolutionVector :: value_type PrimaryVariables ;
|
|
|
|
typedef Opm::FIPData FIPDataType;
|
|
|
|
// --------- Public methods ---------
|
|
|
|
/// Construct the model. It will retain references to the
|
|
/// arguments of this functions, and they are expected to
|
|
/// remain in scope for the lifetime of the solver.
|
|
/// \param[in] param parameters
|
|
/// \param[in] grid grid data structure
|
|
/// \param[in] wells well structure
|
|
/// \param[in] vfp_properties Vertical flow performance tables
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] eclState eclipse state
|
|
/// \param[in] terminal_output request output to cout/cerr
|
|
BlackoilModelEbos(Simulator& ebosSimulator,
|
|
const ModelParameters& param,
|
|
BlackoilWellModel<TypeTag>& well_model,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
const bool terminal_output
|
|
)
|
|
: ebosSimulator_(ebosSimulator)
|
|
, grid_(ebosSimulator_.gridManager().grid())
|
|
, istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) )
|
|
, phaseUsage_(phaseUsageFromDeck(eclState()))
|
|
, has_disgas_(FluidSystem::enableDissolvedGas())
|
|
, has_vapoil_(FluidSystem::enableVaporizedOil())
|
|
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
|
|
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
|
|
, param_( param )
|
|
, well_model_ (well_model)
|
|
, terminal_output_ (terminal_output)
|
|
, current_relaxation_(1.0)
|
|
, dx_old_(UgGridHelpers::numCells(grid_))
|
|
{
|
|
// compute global sum of number of cells
|
|
global_nc_ = detail::countGlobalCells(grid_);
|
|
if (!istlSolver_)
|
|
{
|
|
OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed");
|
|
}
|
|
}
|
|
|
|
bool isParallel() const
|
|
{ return grid_.comm().size() > 1; }
|
|
|
|
const EclipseState& eclState() const
|
|
{ return ebosSimulator_.gridManager().eclState(); }
|
|
|
|
/// Called once before each time step.
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void prepareStep(const SimulatorTimerInterface& timer,
|
|
const ReservoirState& /*reservoir_state*/,
|
|
const WellState& /* well_state */)
|
|
{
|
|
|
|
// update the solution variables in ebos
|
|
|
|
// if the last time step failed we need to update the curent solution
|
|
// and recalculate the Intesive Quantities.
|
|
if ( timer.lastStepFailed() ) {
|
|
ebosSimulator_.model().solution( 0 /* timeIdx */ ) = ebosSimulator_.model().solution( 1 /* timeIdx */ );
|
|
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
|
} else {
|
|
// set the initial solution.
|
|
ebosSimulator_.model().solution( 1 /* timeIdx */ ) = ebosSimulator_.model().solution( 0 /* timeIdx */ );
|
|
}
|
|
|
|
// set the timestep size and index in ebos explicitly
|
|
// we use our own time stepper.
|
|
ebosSimulator_.startNextEpisode( timer.currentStepLength() );
|
|
ebosSimulator_.setEpisodeIndex( timer.reportStepNum() );
|
|
ebosSimulator_.setTimeStepSize( timer.currentStepLength() );
|
|
ebosSimulator_.setTimeStepIndex( timer.reportStepNum() );
|
|
|
|
ebosSimulator_.problem().beginTimeStep();
|
|
|
|
unsigned numDof = ebosSimulator_.model().numGridDof();
|
|
wasSwitched_.resize(numDof);
|
|
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
|
|
|
|
wellModel().beginTimeStep();
|
|
|
|
if (param_.update_equations_scaling_) {
|
|
std::cout << "equation scaling not suported yet" << std::endl;
|
|
//updateEquationsScaling();
|
|
}
|
|
}
|
|
|
|
|
|
/// Called once per nonlinear iteration.
|
|
/// This model will perform a Newton-Raphson update, changing reservoir_state
|
|
/// and well_state. It will also use the nonlinear_solver to do relaxation of
|
|
/// updates if necessary.
|
|
/// \param[in] iteration should be 0 for the first call of a new timestep
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
template <class NonlinearSolverType>
|
|
SimulatorReport nonlinearIteration(const int iteration,
|
|
const SimulatorTimerInterface& timer,
|
|
NonlinearSolverType& nonlinear_solver,
|
|
ReservoirState& /*reservoir_state*/,
|
|
WellState& /*well_state*/)
|
|
{
|
|
SimulatorReport report;
|
|
failureReport_ = SimulatorReport();
|
|
Dune::Timer perfTimer;
|
|
|
|
perfTimer.start();
|
|
if (iteration == 0) {
|
|
// For each iteration we store in a vector the norms of the residual of
|
|
// the mass balance for each active phase, the well flux and the well equations.
|
|
residual_norms_history_.clear();
|
|
current_relaxation_ = 1.0;
|
|
dx_old_ = 0.0;
|
|
}
|
|
|
|
report.total_linearizations = 1;
|
|
|
|
try {
|
|
report += assemble(timer, iteration);
|
|
report.assemble_time += perfTimer.stop();
|
|
}
|
|
catch (...) {
|
|
report.assemble_time += perfTimer.stop();
|
|
failureReport_ += report;
|
|
// todo (?): make the report an attribute of the class
|
|
throw; // continue throwing the stick
|
|
}
|
|
|
|
std::vector<double> residual_norms;
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
// the step is not considered converged until at least minIter iterations is done
|
|
report.converged = getConvergence(timer, iteration,residual_norms) && iteration > nonlinear_solver.minIter();
|
|
|
|
// checking whether the group targets are converged
|
|
if (wellModel().wellCollection().groupControlActive()) {
|
|
report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates());
|
|
}
|
|
|
|
report.update_time += perfTimer.stop();
|
|
residual_norms_history_.push_back(residual_norms);
|
|
if (!report.converged) {
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
report.total_newton_iterations = 1;
|
|
|
|
// enable single precision for solvers when dt is smaller then 20 days
|
|
//residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
|
|
|
|
// Compute the nonlinear update.
|
|
const int nc = UgGridHelpers::numCells(grid_);
|
|
BVector x(nc);
|
|
|
|
try {
|
|
solveJacobianSystem(x);
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
}
|
|
catch (...) {
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
|
|
failureReport_ += report;
|
|
throw; // re-throw up
|
|
}
|
|
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
|
|
// handling well state update before oscillation treatment is a decision based
|
|
// on observation to avoid some big performance degeneration under some circumstances.
|
|
// there is no theorectical explanation which way is better for sure.
|
|
wellModel().recoverWellSolutionAndUpdateWellState(x);
|
|
|
|
if (param_.use_update_stabilization_) {
|
|
// Stabilize the nonlinear update.
|
|
bool isOscillate = false;
|
|
bool isStagnate = false;
|
|
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
|
|
if (isOscillate) {
|
|
current_relaxation_ -= nonlinear_solver.relaxIncrement();
|
|
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
|
|
if (terminalOutputEnabled()) {
|
|
std::string msg = " Oscillating behavior detected: Relaxation set to "
|
|
+ std::to_string(current_relaxation_);
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
|
|
}
|
|
|
|
// Apply the update, with considering model-dependent limitations and
|
|
// chopping of the update.
|
|
updateState(x);
|
|
|
|
report.update_time += perfTimer.stop();
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
void printIf(int c, double x, double y, double eps, std::string type) {
|
|
if (std::abs(x-y) > eps) {
|
|
std::cout << type << " " <<c << ": "<<x << " " << y << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
/// Called once after each time step.
|
|
/// In this class, this function does nothing.
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void afterStep(const SimulatorTimerInterface& timer,
|
|
const ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
DUNE_UNUSED_PARAMETER(timer);
|
|
DUNE_UNUSED_PARAMETER(reservoir_state);
|
|
DUNE_UNUSED_PARAMETER(well_state);
|
|
|
|
wellModel().timeStepSucceeded();
|
|
ebosSimulator_.problem().endTimeStep();
|
|
|
|
}
|
|
|
|
/// Assemble the residual and Jacobian of the nonlinear system.
|
|
/// \param[in] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
|
SimulatorReport assemble(const SimulatorTimerInterface& timer,
|
|
const int iterationIdx)
|
|
{
|
|
// -------- Mass balance equations --------
|
|
ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx);
|
|
ebosSimulator_.problem().beginIteration();
|
|
ebosSimulator_.model().linearizer().linearize();
|
|
ebosSimulator_.problem().endIteration();
|
|
|
|
// -------- Well equations ----------
|
|
double dt = timer.currentStepLength();
|
|
|
|
try
|
|
{
|
|
// assembles the well equations and applies the wells to
|
|
// the reservoir equations as a source term.
|
|
wellModel().assemble(iterationIdx, dt);
|
|
}
|
|
catch ( const Dune::FMatrixError& e )
|
|
{
|
|
OPM_THROW(Opm::NumericalProblem,"Error encounted when solving well equations");
|
|
}
|
|
|
|
return wellModel().lastReport();
|
|
}
|
|
|
|
// compute the "relative" change of the solution between time steps
|
|
template <class Dummy>
|
|
double relativeChange(const Dummy&, const Dummy&) const
|
|
{
|
|
Scalar resultDelta = 0.0;
|
|
Scalar resultDenom = 0.0;
|
|
|
|
const auto& elemMapper = ebosSimulator_.model().elementMapper();
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
unsigned globalElemIdx = elemMapper.index(elem);
|
|
const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
|
|
|
|
Scalar pressureNew;
|
|
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
|
|
|
|
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
|
|
Scalar oilSaturationNew = 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSaturationIdx];
|
|
oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsNew.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
|
saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx];
|
|
oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew;
|
|
}
|
|
|
|
const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx];
|
|
|
|
Scalar pressureOld;
|
|
pressureOld = priVarsOld[Indices::pressureSwitchIdx];
|
|
|
|
Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 };
|
|
Scalar oilSaturationOld = 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSaturationIdx];
|
|
oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsOld.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
|
saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx];
|
|
oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld;
|
|
}
|
|
|
|
Scalar tmp = pressureNew - pressureOld;
|
|
resultDelta += tmp*tmp;
|
|
resultDenom += pressureNew*pressureNew;
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
|
|
Scalar tmp = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
|
|
resultDelta += tmp*tmp;
|
|
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
|
|
}
|
|
}
|
|
|
|
resultDelta = gridView.comm().sum(resultDelta);
|
|
resultDenom = gridView.comm().sum(resultDenom);
|
|
|
|
if (resultDenom > 0.0)
|
|
return resultDelta/resultDenom;
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
/// Number of linear iterations used in last call to solveJacobianSystem().
|
|
int linearIterationsLastSolve() const
|
|
{
|
|
return istlSolver().iterations();
|
|
}
|
|
|
|
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
|
/// r is the residual.
|
|
void solveJacobianSystem(BVector& x) const
|
|
{
|
|
const auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
|
|
// J = [A, B; C, D], where A is the reservoir equations, B and C the interaction of well
|
|
// with the reservoir and D is the wells itself.
|
|
// The full system is reduced to a number of cells X number of cells system via Schur complement
|
|
// A -= B^T D^-1 C
|
|
// Instead of modifying A, the Ax operator is modified. i.e Ax -= B^T D^-1 C x in the WellModelMatrixAdapter.
|
|
// The residual is modified similarly.
|
|
// r = [r, r_well], where r is the residual and r_well the well residual.
|
|
// r -= B^T * D^-1 r_well
|
|
|
|
// apply well residual to the residual.
|
|
wellModel().apply(ebosResid);
|
|
|
|
// set initial guess
|
|
x = 0.0;
|
|
|
|
// Solve system.
|
|
if( isParallel() )
|
|
{
|
|
typedef WellModelMatrixAdapter< Mat, BVector, BVector, BlackoilWellModel<TypeTag>, true > Operator;
|
|
Operator opA(ebosJac, wellModel(), istlSolver().parallelInformation() );
|
|
assert( opA.comm() );
|
|
istlSolver().solve( opA, x, ebosResid, *(opA.comm()) );
|
|
}
|
|
else
|
|
{
|
|
typedef WellModelMatrixAdapter< Mat, BVector, BVector, BlackoilWellModel<TypeTag>, false > Operator;
|
|
Operator opA(ebosJac, wellModel());
|
|
istlSolver().solve( opA, x, ebosResid );
|
|
}
|
|
}
|
|
|
|
//=====================================================================
|
|
// Implementation for ISTL-matrix based operator
|
|
//=====================================================================
|
|
|
|
/*!
|
|
\brief Adapter to turn a matrix into a linear operator.
|
|
|
|
Adapts a matrix to the assembled linear operator interface
|
|
*/
|
|
template<class M, class X, class Y, class WellModel, bool overlapping >
|
|
class WellModelMatrixAdapter : public Dune::AssembledLinearOperator<M,X,Y>
|
|
{
|
|
typedef Dune::AssembledLinearOperator<M,X,Y> BaseType;
|
|
|
|
public:
|
|
typedef M matrix_type;
|
|
typedef X domain_type;
|
|
typedef Y range_type;
|
|
typedef typename X::field_type field_type;
|
|
|
|
#if HAVE_MPI
|
|
typedef Dune::OwnerOverlapCopyCommunication<int,int> communication_type;
|
|
#else
|
|
typedef Dune::CollectiveCommunication< Grid > communication_type;
|
|
#endif
|
|
|
|
enum {
|
|
//! \brief The solver category.
|
|
category = overlapping ?
|
|
Dune::SolverCategory::overlapping :
|
|
Dune::SolverCategory::sequential
|
|
};
|
|
|
|
//! constructor: just store a reference to a matrix
|
|
WellModelMatrixAdapter (const M& A, const WellModel& wellMod, const boost::any& parallelInformation = boost::any() )
|
|
: A_( A ), wellMod_( wellMod ), comm_()
|
|
{
|
|
#if HAVE_MPI
|
|
if( parallelInformation.type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>( parallelInformation);
|
|
comm_.reset( new communication_type( info.communicator() ) );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
virtual void apply( const X& x, Y& y ) const
|
|
{
|
|
A_.mv( x, y );
|
|
// add well model modification to y
|
|
wellMod_.apply(x, y );
|
|
|
|
#if HAVE_MPI
|
|
if( comm_ )
|
|
comm_->project( y );
|
|
#endif
|
|
}
|
|
|
|
// y += \alpha * A * x
|
|
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
|
|
{
|
|
A_.usmv(alpha,x,y);
|
|
// add scaled well model modification to y
|
|
wellMod_.applyScaleAdd( alpha, x, y );
|
|
|
|
#if HAVE_MPI
|
|
if( comm_ )
|
|
comm_->project( y );
|
|
#endif
|
|
}
|
|
|
|
virtual const matrix_type& getmat() const { return A_; }
|
|
|
|
communication_type* comm()
|
|
{
|
|
return comm_.operator->();
|
|
}
|
|
|
|
protected:
|
|
const matrix_type& A_ ;
|
|
const WellModel& wellMod_;
|
|
std::unique_ptr< communication_type > comm_;
|
|
};
|
|
|
|
/// Apply an update to the primary variables, chopped if appropriate.
|
|
/// \param[in] dx updates to apply to primary variables
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void updateState(const BVector& dx)
|
|
{
|
|
const auto& ebosProblem = ebosSimulator_.problem();
|
|
|
|
unsigned numSwitched = 0;
|
|
ElementContext elemCtx( ebosSimulator_ );
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
SolutionVector& solution = ebosSimulator_.model().solution( 0 /* timeIdx */ );
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
|
|
PrimaryVariables& priVars = solution[ cell_idx ];
|
|
|
|
const double& dp = dx[cell_idx][Indices::pressureSwitchIdx];
|
|
double& p = priVars[Indices::pressureSwitchIdx];
|
|
const double& dp_rel_max = dpMaxRel();
|
|
const int sign_dp = dp > 0 ? 1: -1;
|
|
p -= sign_dp * std::min(std::abs(dp), std::abs(p)*dp_rel_max);
|
|
p = std::max(p, 0.0);
|
|
|
|
// Saturation updates.
|
|
const double dsw = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ? dx[cell_idx][Indices::waterSaturationIdx] : 0.0;
|
|
const double dxvar = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ? dx[cell_idx][Indices::compositionSwitchIdx] : 0.0;
|
|
|
|
double dso = 0.0;
|
|
double dsg = 0.0;
|
|
double drs = 0.0;
|
|
double drv = 0.0;
|
|
|
|
// determine the saturation delta values
|
|
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
|
dsg = dxvar;
|
|
}
|
|
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
|
|
drs = dxvar;
|
|
}
|
|
else {
|
|
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv);
|
|
drv = dxvar;
|
|
dsg = 0.0;
|
|
}
|
|
|
|
// solvent
|
|
const double dss = has_solvent_ ? dx[cell_idx][Indices::solventSaturationIdx] : 0.0;
|
|
|
|
// polymer
|
|
const double dc = has_polymer_ ? dx[cell_idx][Indices::polymerConcentrationIdx] : 0.0;
|
|
|
|
// oil
|
|
dso = - (dsw + dsg + dss);
|
|
|
|
// compute a scaling factor for the saturation update so that the maximum
|
|
// allowed change of saturations between iterations is not exceeded
|
|
double maxVal = 0.0;
|
|
maxVal = std::max(std::abs(dsw),maxVal);
|
|
maxVal = std::max(std::abs(dsg),maxVal);
|
|
maxVal = std::max(std::abs(dso),maxVal);
|
|
maxVal = std::max(std::abs(dss),maxVal);
|
|
|
|
double satScaleFactor = 1.0;
|
|
if (maxVal > dsMax()) {
|
|
satScaleFactor = dsMax()/maxVal;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
double& sw = priVars[Indices::waterSaturationIdx];
|
|
sw -= satScaleFactor * dsw;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
|
double& sg = priVars[Indices::compositionSwitchIdx];
|
|
sg -= satScaleFactor * dsg;
|
|
}
|
|
}
|
|
|
|
if (has_solvent_) {
|
|
double& ss = priVars[Indices::solventSaturationIdx];
|
|
ss -= satScaleFactor * dss;
|
|
ss = std::min(std::max(ss, 0.0),1.0);
|
|
}
|
|
if (has_polymer_) {
|
|
double& c = priVars[Indices::polymerConcentrationIdx];
|
|
c -= satScaleFactor * dc;
|
|
c = std::max(c, 0.0);
|
|
}
|
|
|
|
// Update rs and rv
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ) {
|
|
unsigned pvtRegionIdx = ebosSimulator_.problem().pvtRegionIndex(cell_idx);
|
|
const double drmaxrel = drMaxRel();
|
|
if (has_disgas_) {
|
|
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
|
|
Scalar RsSat =
|
|
FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx, 300.0, p);
|
|
|
|
double& rs = priVars[Indices::compositionSwitchIdx];
|
|
rs -= ((drs<0)?-1:1)*std::min(std::abs(drs), RsSat*drmaxrel);
|
|
rs = std::max(rs, 0.0);
|
|
}
|
|
|
|
}
|
|
if (has_vapoil_) {
|
|
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
|
Scalar RvSat =
|
|
FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx, 300.0, p);
|
|
|
|
double& rv = priVars[Indices::compositionSwitchIdx];
|
|
rv -= ((drv<0)?-1:1)*std::min(std::abs(drv), RvSat*drmaxrel);
|
|
rv = std::max(rv, 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add an epsilon to make it harder to switch back immediately after the primary variable was changed.
|
|
if (wasSwitched_[cell_idx])
|
|
wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx, 1e-5);
|
|
else
|
|
wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx);
|
|
|
|
if (wasSwitched_[cell_idx])
|
|
++numSwitched;
|
|
}
|
|
|
|
// if the solution is updated the intensive Quantities need to be recalculated
|
|
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
|
|
|
}
|
|
|
|
/// Return true if output to cout is wanted.
|
|
bool terminalOutputEnabled() const
|
|
{
|
|
return terminal_output_;
|
|
}
|
|
|
|
template <class CollectiveCommunication>
|
|
double convergenceReduction(const CollectiveCommunication& comm,
|
|
const double pvSumLocal,
|
|
std::vector< Scalar >& R_sum,
|
|
std::vector< Scalar >& maxCoeff,
|
|
std::vector< Scalar >& B_avg)
|
|
{
|
|
// Compute total pore volume (use only owned entries)
|
|
double pvSum = pvSumLocal;
|
|
|
|
if( comm.size() > 1 )
|
|
{
|
|
// global reduction
|
|
std::vector< Scalar > sumBuffer;
|
|
std::vector< Scalar > maxBuffer;
|
|
const int numComp = B_avg.size();
|
|
sumBuffer.reserve( 2*numComp + 1 ); // +1 for pvSum
|
|
maxBuffer.reserve( numComp );
|
|
for( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
sumBuffer.push_back( B_avg[ compIdx ] );
|
|
sumBuffer.push_back( R_sum[ compIdx ] );
|
|
maxBuffer.push_back( maxCoeff[ compIdx ] );
|
|
}
|
|
|
|
// Compute total pore volume
|
|
sumBuffer.push_back( pvSum );
|
|
|
|
// compute global sum
|
|
comm.sum( sumBuffer.data(), sumBuffer.size() );
|
|
|
|
// compute global max
|
|
comm.max( maxBuffer.data(), maxBuffer.size() );
|
|
|
|
// restore values to local variables
|
|
for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx )
|
|
{
|
|
B_avg[ compIdx ] = sumBuffer[ buffIdx ];
|
|
++buffIdx;
|
|
|
|
R_sum[ compIdx ] = sumBuffer[ buffIdx ];
|
|
}
|
|
|
|
for( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
maxCoeff[ compIdx ] = maxBuffer[ compIdx ];
|
|
}
|
|
|
|
// restore global pore volume
|
|
pvSum = sumBuffer.back();
|
|
}
|
|
|
|
// return global pore volume
|
|
return pvSum;
|
|
}
|
|
|
|
/// Compute convergence based on total mass balance (tol_mb) and maximum
|
|
/// residual mass balance (tol_cnv).
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] dt timestep length
|
|
/// \param[in] iteration current iteration number
|
|
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector<double>& residual_norms)
|
|
{
|
|
typedef std::vector< Scalar > Vector;
|
|
|
|
const double dt = timer.currentStepLength();
|
|
const double tol_mb = param_.tolerance_mb_;
|
|
const double tol_cnv = param_.tolerance_cnv_;
|
|
|
|
const int numComp = numEq;
|
|
|
|
Vector R_sum(numComp, 0.0 );
|
|
Vector B_avg(numComp, 0.0 );
|
|
Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() );
|
|
|
|
const auto& ebosModel = ebosSimulator_.model();
|
|
const auto& ebosProblem = ebosSimulator_.problem();
|
|
|
|
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& gridView = ebosSimulator().gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
|
|
double pvSumLocal = 0.0;
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double pvValue = ebosProblem.porosity(cell_idx) * ebosModel.dofTotalVolume( cell_idx );
|
|
pvSumLocal += pvValue;
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
|
|
{
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
|
|
B_avg[ compIdx ] += 1.0 / fs.invB(phaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][compIdx];
|
|
|
|
R_sum[ compIdx ] += R2;
|
|
maxCoeff[ compIdx ] = std::max( maxCoeff[ compIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
|
|
if ( has_solvent_ ) {
|
|
B_avg[ contiSolventEqIdx ] += 1.0 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
const auto R2 = ebosResid[cell_idx][contiSolventEqIdx];
|
|
R_sum[ contiSolventEqIdx ] += R2;
|
|
maxCoeff[ contiSolventEqIdx ] = std::max( maxCoeff[ contiSolventEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
if (has_polymer_ ) {
|
|
B_avg[ contiPolymerEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R2 = ebosResid[cell_idx][contiPolymerEqIdx];
|
|
R_sum[ contiPolymerEqIdx ] += R2;
|
|
maxCoeff[ contiPolymerEqIdx ] = std::max( maxCoeff[ contiPolymerEqIdx ], std::abs( R2 ) / pvValue );
|
|
}
|
|
|
|
}
|
|
|
|
// compute local average in terms of global number of elements
|
|
const int bSize = B_avg.size();
|
|
for ( int i = 0; i<bSize; ++i )
|
|
{
|
|
B_avg[ i ] /= Scalar( global_nc_ );
|
|
}
|
|
|
|
// TODO: we remove the maxNormWell for now because the convergence of wells are on a individual well basis.
|
|
// Anyway, we need to provide some infromation to help debug the well iteration process.
|
|
|
|
|
|
// compute global sum and max of quantities
|
|
const double pvSum = convergenceReduction(grid_.comm(), pvSumLocal,
|
|
R_sum, maxCoeff, B_avg);
|
|
|
|
Vector CNV(numComp);
|
|
Vector mass_balance_residual(numComp);
|
|
|
|
bool converged_MB = true;
|
|
bool converged_CNV = true;
|
|
// Finish computation
|
|
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx];
|
|
mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum;
|
|
converged_MB = converged_MB && (mass_balance_residual[compIdx] < tol_mb);
|
|
converged_CNV = converged_CNV && (CNV[compIdx] < tol_cnv);
|
|
|
|
residual_norms.push_back(CNV[compIdx]);
|
|
}
|
|
|
|
const bool converged_Well = wellModel().getWellConvergence(B_avg);
|
|
|
|
bool converged = converged_MB && converged_Well;
|
|
|
|
// do not care about the cell based residual in the last two Newton
|
|
// iterations
|
|
if (iteration < param_.max_strict_iter_)
|
|
converged = converged && converged_CNV;
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg = "Iter";
|
|
|
|
std::vector< std::string > key( numComp );
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
|
const std::string& compName = FluidSystem::componentName(canonicalCompIdx);
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
|
|
key[ compIdx ] = std::toupper( compName.front() );
|
|
}
|
|
if (has_solvent_) {
|
|
key[ solventSaturationIdx ] = "S";
|
|
}
|
|
|
|
if (has_polymer_) {
|
|
key[ polymerConcentrationIdx ] = "P";
|
|
}
|
|
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
msg += " MB(" + key[ compIdx ] + ") ";
|
|
}
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
msg += " CNV(" + key[ compIdx ] + ") ";
|
|
}
|
|
OpmLog::debug(msg);
|
|
}
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
ss << std::setw(4) << iteration;
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
ss << std::setw(11) << mass_balance_residual[compIdx];
|
|
}
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
ss << std::setw(11) << CNV[compIdx];
|
|
}
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
OpmLog::debug(ss.str());
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
|
const std::string& compName = FluidSystem::componentName(canonicalCompIdx);
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
|
|
|
|
if (std::isnan(mass_balance_residual[compIdx])
|
|
|| std::isnan(CNV[compIdx])) {
|
|
OPM_THROW(Opm::NumericalProblem, "NaN residual for " << compName << " equation");
|
|
}
|
|
if (mass_balance_residual[compIdx] > maxResidualAllowed()
|
|
|| CNV[compIdx] > maxResidualAllowed()) {
|
|
OPM_THROW(Opm::NumericalProblem, "Too large residual for " << compName << " equation");
|
|
}
|
|
if (mass_balance_residual[compIdx] < 0
|
|
|| CNV[compIdx] < 0) {
|
|
OPM_THROW(Opm::NumericalProblem, "Negative residual for " << compName << " equation");
|
|
}
|
|
}
|
|
|
|
return converged;
|
|
}
|
|
|
|
|
|
/// The number of active fluid phases in the model.
|
|
int numPhases() const
|
|
{
|
|
return phaseUsage_.num_phases;
|
|
}
|
|
|
|
/// Wrapper required due to not following generic API
|
|
template<class T>
|
|
std::vector<std::vector<double> >
|
|
computeFluidInPlace(const T&, const std::vector<int>& fipnum) const
|
|
{
|
|
return computeFluidInPlace(fipnum);
|
|
}
|
|
|
|
std::vector<std::vector<double> >
|
|
computeFluidInPlace(const std::vector<int>& fipnum) const
|
|
{
|
|
const auto& comm = grid_.comm();
|
|
const auto& gridView = ebosSimulator().gridView();
|
|
const int nc = gridView.size(/*codim=*/0);
|
|
int ntFip = *std::max_element(fipnum.begin(), fipnum.end());
|
|
ntFip = comm.max(ntFip);
|
|
|
|
std::vector<double> tpv(ntFip, 0.0);
|
|
std::vector<double> hcpv(ntFip, 0.0);
|
|
|
|
std::vector<std::vector<double> > regionValues(ntFip, std::vector<double>(FIPDataType::fipValues,0.0));
|
|
|
|
for (int i = 0; i<FIPDataType::fipValues; i++) {
|
|
fip_.fip[i].resize(nc,0.0);
|
|
}
|
|
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const int regionIdx = fipnum[cellIdx] - 1;
|
|
if (regionIdx < 0) {
|
|
// the given cell is not attributed to any region
|
|
continue;
|
|
}
|
|
|
|
// calculate the pore volume of the current cell. Note that the porosity
|
|
// returned by the intensive quantities is defined as the ratio of pore
|
|
// space to total cell volume and includes all pressure dependent (->
|
|
// rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG,
|
|
// PORV, MINPV and friends). Also note that because of this, the porosity
|
|
// returned by the intensive quantities can be outside of the physical
|
|
// range [0, 1] in pathetic cases.
|
|
const double pv =
|
|
ebosSimulator_.model().dofTotalVolume(cellIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
for (unsigned phase = 0; phase < FluidSystem::numPhases; ++phase) {
|
|
if (!FluidSystem::phaseIsActive(phase)) {
|
|
continue;
|
|
}
|
|
|
|
const double b = fs.invB(phase).value();
|
|
const double s = fs.saturation(phase).value();
|
|
const unsigned flowCanonicalPhaseIdx = ebosPhaseToFlowCanonicalPhaseIdx(phase);
|
|
|
|
fip_.fip[flowCanonicalPhaseIdx][cellIdx] = b * s * pv;
|
|
regionValues[regionIdx][flowCanonicalPhaseIdx] += fip_.fip[flowCanonicalPhaseIdx][cellIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
// Account for gas dissolved in oil and vaporized oil
|
|
fip_.fip[FIPDataType::FIP_DISSOLVED_GAS][cellIdx] = fs.Rs().value() * fip_.fip[FIPDataType::FIP_LIQUID][cellIdx];
|
|
fip_.fip[FIPDataType::FIP_VAPORIZED_OIL][cellIdx] = fs.Rv().value() * fip_.fip[FIPDataType::FIP_VAPOUR][cellIdx];
|
|
|
|
regionValues[regionIdx][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][cellIdx];
|
|
regionValues[regionIdx][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][cellIdx];
|
|
}
|
|
|
|
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
|
|
tpv[regionIdx] += pv;
|
|
hcpv[regionIdx] += pv * hydrocarbon;
|
|
}
|
|
|
|
// sum tpv (-> total pore volume of the regions) and hcpv (-> pore volume of the
|
|
// the regions that is occupied by hydrocarbons)
|
|
comm.sum(tpv.data(), tpv.size());
|
|
comm.sum(hcpv.data(), hcpv.size());
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const int regionIdx = fipnum[cellIdx] - 1;
|
|
if (regionIdx < 0) {
|
|
// the cell is not attributed to any region. ignore it!
|
|
continue;
|
|
}
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
// calculate the pore volume of the current cell. Note that the
|
|
// porosity returned by the intensive quantities is defined as the
|
|
// ratio of pore space to total cell volume and includes all pressure
|
|
// dependent (-> rock compressibility) and static modifiers (MULTPV,
|
|
// MULTREGP, NTG, PORV, MINPV and friends). Also note that because of
|
|
// this, the porosity returned by the intensive quantities can be
|
|
// outside of the physical range [0, 1] in pathetic cases.
|
|
const double pv =
|
|
ebosSimulator_.model().dofTotalVolume(cellIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
fip_.fip[FIPDataType::FIP_PV][cellIdx] = pv;
|
|
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
|
|
//Compute hydrocarbon pore volume weighted average pressure.
|
|
//If we have no hydrocarbon in region, use pore volume weighted average pressure instead
|
|
if (hcpv[regionIdx] > 1e-10) {
|
|
fip_.fip[FIPDataType::FIP_WEIGHTED_PRESSURE][cellIdx] = pv * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[regionIdx];
|
|
} else {
|
|
fip_.fip[FIPDataType::FIP_WEIGHTED_PRESSURE][cellIdx] = pv * fs.pressure(FluidSystem::oilPhaseIdx).value() / tpv[regionIdx];
|
|
}
|
|
|
|
regionValues[regionIdx][FIPDataType::FIP_PV] += fip_.fip[FIPDataType::FIP_PV][cellIdx];
|
|
regionValues[regionIdx][FIPDataType::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPDataType::FIP_WEIGHTED_PRESSURE][cellIdx];
|
|
}
|
|
|
|
// sum the results over all processes
|
|
for(int regionIdx=0; regionIdx < ntFip; ++regionIdx) {
|
|
comm.sum(regionValues[regionIdx].data(), regionValues[regionIdx].size());
|
|
}
|
|
|
|
return regionValues;
|
|
}
|
|
|
|
SimulationDataContainer getSimulatorData ( const SimulationDataContainer& /*localState*/) const
|
|
{
|
|
typedef std::vector<double> VectorType;
|
|
|
|
const auto& ebosModel = ebosSimulator().model();
|
|
const auto& phaseUsage = phaseUsage_;
|
|
|
|
// extract everything which can possibly be written to disk
|
|
const int numCells = ebosModel.numGridDof();
|
|
const int num_phases = numPhases();
|
|
|
|
SimulationDataContainer simData( numCells, 0, num_phases );
|
|
|
|
//Get shorthands for water, oil, gas
|
|
const int aqua_active = phaseUsage.phase_used[Opm::PhaseUsage::Aqua];
|
|
const int liquid_active = phaseUsage.phase_used[Opm::PhaseUsage::Liquid];
|
|
const int vapour_active = phaseUsage.phase_used[Opm::PhaseUsage::Vapour];
|
|
|
|
const int aqua_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Aqua ];
|
|
const int liquid_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Liquid ];
|
|
const int vapour_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Vapour ];
|
|
|
|
VectorType zero;
|
|
|
|
VectorType& pressureOil = simData.pressure();
|
|
VectorType& temperature = simData.temperature();
|
|
VectorType& saturation = simData.saturation();
|
|
|
|
// WATER
|
|
if( aqua_active ) {
|
|
simData.registerCellData( "1OVERBW", 1 );
|
|
simData.registerCellData( "WAT_DEN", 1 );
|
|
simData.registerCellData( "WAT_VISC", 1 );
|
|
simData.registerCellData( "WATKR", 1 );
|
|
}
|
|
|
|
VectorType& bWater = aqua_active ? simData.getCellData( "1OVERBW" ) : zero;
|
|
VectorType& rhoWater = aqua_active ? simData.getCellData( "WAT_DEN" ) : zero;
|
|
VectorType& muWater = aqua_active ? simData.getCellData( "WAT_VISC" ) : zero;
|
|
VectorType& krWater = aqua_active ? simData.getCellData( "WATKR" ) : zero;
|
|
|
|
// OIL
|
|
if( liquid_active ) {
|
|
simData.registerCellData( "1OVERBO", 1 );
|
|
simData.registerCellData( "OIL_DEN", 1 );
|
|
simData.registerCellData( "OIL_VISC", 1 );
|
|
simData.registerCellData( "OILKR", 1 );
|
|
}
|
|
|
|
VectorType& bOil = liquid_active ? simData.getCellData( "1OVERBO" ) : zero;
|
|
VectorType& rhoOil = liquid_active ? simData.getCellData( "OIL_DEN" ) : zero;
|
|
VectorType& muOil = liquid_active ? simData.getCellData( "OIL_VISC" ) : zero;
|
|
VectorType& krOil = liquid_active ? simData.getCellData( "OILKR" ) : zero;
|
|
|
|
// GAS
|
|
if( vapour_active ) {
|
|
simData.registerCellData( "1OVERBG", 1 );
|
|
simData.registerCellData( "GAS_DEN", 1 );
|
|
simData.registerCellData( "GAS_VISC", 1 );
|
|
simData.registerCellData( "GASKR", 1 );
|
|
}
|
|
|
|
VectorType& bGas = vapour_active ? simData.getCellData( "1OVERBG" ) : zero;
|
|
VectorType& rhoGas = vapour_active ? simData.getCellData( "GAS_DEN" ) : zero;
|
|
VectorType& muGas = vapour_active ? simData.getCellData( "GAS_VISC" ) : zero;
|
|
VectorType& krGas = vapour_active ? simData.getCellData( "GASKR" ) : zero;
|
|
|
|
simData.registerCellData( BlackoilState::GASOILRATIO, 1 );
|
|
simData.registerCellData( BlackoilState::RV, 1 );
|
|
simData.registerCellData( "RSSAT", 1 );
|
|
simData.registerCellData( "RVSAT", 1 );
|
|
|
|
VectorType& Rs = simData.getCellData( BlackoilState::GASOILRATIO );
|
|
VectorType& Rv = simData.getCellData( BlackoilState::RV );
|
|
VectorType& RsSat = simData.getCellData( "RSSAT" );
|
|
VectorType& RvSat = simData.getCellData( "RVSAT" );
|
|
|
|
simData.registerCellData( "PBUB", 1 );
|
|
simData.registerCellData( "PDEW", 1 );
|
|
|
|
VectorType& Pb = simData.getCellData( "PBUB" );
|
|
VectorType& Pd = simData.getCellData( "PDEW" );
|
|
|
|
simData.registerCellData( "SOMAX", 1 );
|
|
VectorType& somax = simData.getCellData( "SOMAX" );
|
|
|
|
// Two components for hysteresis parameters
|
|
// pcSwMdc/krnSwMdc, one for oil-water and one for gas-oil
|
|
simData.registerCellData( "PCSWMDC_GO", 1 );
|
|
simData.registerCellData( "KRNSWMDC_GO", 1 );
|
|
|
|
simData.registerCellData( "PCSWMDC_OW", 1 );
|
|
simData.registerCellData( "KRNSWMDC_OW", 1 );
|
|
|
|
VectorType& pcSwMdc_go = simData.getCellData( "PCSWMDC_GO" );
|
|
VectorType& krnSwMdc_go = simData.getCellData( "KRNSWMDC_GO" );
|
|
|
|
VectorType& pcSwMdc_ow = simData.getCellData( "PCSWMDC_OW" );
|
|
VectorType& krnSwMdc_ow = simData.getCellData( "KRNSWMDC_OW" );
|
|
|
|
if (has_solvent_) {
|
|
simData.registerCellData( "SSOL", 1 );
|
|
}
|
|
VectorType& ssol = has_solvent_ ? simData.getCellData( "SSOL" ) : zero;
|
|
|
|
if (has_polymer_) {
|
|
simData.registerCellData( "POLYMER", 1 );
|
|
}
|
|
VectorType& cpolymer = has_polymer_ ? simData.getCellData( "POLYMER" ) : zero;
|
|
|
|
std::vector<int> failed_cells_pb;
|
|
std::vector<int> failed_cells_pd;
|
|
const auto& gridView = ebosSimulator().gridView();
|
|
auto elemIt = gridView.template begin</*codim=*/ 0, Dune::Interior_Partition>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/ 0, Dune::Interior_Partition>();
|
|
ElementContext elemCtx(ebosSimulator());
|
|
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const int satIdx = cellIdx * num_phases;
|
|
|
|
pressureOil[cellIdx] = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
|
|
temperature[cellIdx] = fs.temperature(FluidSystem::oilPhaseIdx).value();
|
|
|
|
somax[cellIdx] = ebosSimulator().model().maxOilSaturation(cellIdx);
|
|
|
|
const auto& matLawManager = ebosSimulator().problem().materialLawManager();
|
|
if (matLawManager->enableHysteresis()) {
|
|
matLawManager->oilWaterHysteresisParams(
|
|
pcSwMdc_ow[cellIdx],
|
|
krnSwMdc_ow[cellIdx],
|
|
cellIdx);
|
|
matLawManager->gasOilHysteresisParams(
|
|
pcSwMdc_go[cellIdx],
|
|
krnSwMdc_go[cellIdx],
|
|
cellIdx);
|
|
}
|
|
|
|
if (aqua_active) {
|
|
saturation[ satIdx + aqua_pos ] = fs.saturation(FluidSystem::waterPhaseIdx).value();
|
|
bWater[cellIdx] = fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
rhoWater[cellIdx] = fs.density(FluidSystem::waterPhaseIdx).value();
|
|
muWater[cellIdx] = fs.viscosity(FluidSystem::waterPhaseIdx).value();
|
|
krWater[cellIdx] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value();
|
|
}
|
|
if (vapour_active) {
|
|
saturation[ satIdx + vapour_pos ] = fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
bGas[cellIdx] = fs.invB(FluidSystem::gasPhaseIdx).value();
|
|
rhoGas[cellIdx] = fs.density(FluidSystem::gasPhaseIdx).value();
|
|
muGas[cellIdx] = fs.viscosity(FluidSystem::gasPhaseIdx).value();
|
|
krGas[cellIdx] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value();
|
|
Rs[cellIdx] = fs.Rs().value();
|
|
Rv[cellIdx] = fs.Rv().value();
|
|
RsSat[cellIdx] = FluidSystem::saturatedDissolutionFactor(fs,
|
|
FluidSystem::oilPhaseIdx,
|
|
intQuants.pvtRegionIndex(),
|
|
/*maxOilSaturation=*/1.0).value();
|
|
RvSat[cellIdx] = FluidSystem::saturatedDissolutionFactor(fs,
|
|
FluidSystem::gasPhaseIdx,
|
|
intQuants.pvtRegionIndex(),
|
|
/*maxOilSaturation=*/1.0).value();
|
|
try {
|
|
Pb[cellIdx] = FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex()).value();
|
|
}
|
|
catch (const NumericalProblem& e) {
|
|
const auto globalIdx = ebosSimulator_.gridManager().grid().globalCell()[cellIdx];
|
|
failed_cells_pb.push_back(globalIdx);
|
|
}
|
|
try {
|
|
Pd[cellIdx] = FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex()).value();
|
|
}
|
|
catch (const NumericalProblem& e) {
|
|
const auto globalIdx = ebosSimulator_.gridManager().grid().globalCell()[cellIdx];
|
|
failed_cells_pd.push_back(globalIdx);
|
|
}
|
|
}
|
|
if( liquid_active )
|
|
{
|
|
saturation[ satIdx + liquid_pos ] = fs.saturation(FluidSystem::oilPhaseIdx).value();
|
|
bOil[cellIdx] = fs.invB(FluidSystem::oilPhaseIdx).value();
|
|
rhoOil[cellIdx] = fs.density(FluidSystem::oilPhaseIdx).value();
|
|
muOil[cellIdx] = fs.viscosity(FluidSystem::oilPhaseIdx).value();
|
|
krOil[cellIdx] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value();
|
|
}
|
|
|
|
if (has_solvent_)
|
|
{
|
|
ssol[cellIdx] = intQuants.solventSaturation().value();
|
|
}
|
|
|
|
if (has_polymer_)
|
|
{
|
|
cpolymer[cellIdx] = intQuants.polymerConcentration().value();
|
|
}
|
|
|
|
// hack to make the intial output of rs and rv Ecl compatible.
|
|
// For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step
|
|
// where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite
|
|
// rs and rv with the values computed in the initially.
|
|
// Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values.
|
|
if (ebosSimulator_.episodeIndex() < 0 && vapour_active && liquid_active ) {
|
|
|
|
const auto& fs_updated = ebosSimulator().problem().initialFluidState(cellIdx);
|
|
|
|
// use initial rs and rv values
|
|
Rv[cellIdx] = fs_updated.Rv();
|
|
Rs[cellIdx] = fs_updated.Rs();
|
|
|
|
//re-compute the volume factors, viscosities and densities.
|
|
rhoOil[cellIdx] = FluidSystem::density(fs_updated,
|
|
FluidSystem::oilPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
rhoGas[cellIdx] = FluidSystem::density(fs_updated,
|
|
FluidSystem::gasPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
|
|
bOil[cellIdx] = FluidSystem::inverseFormationVolumeFactor(fs_updated,
|
|
FluidSystem::oilPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
bGas[cellIdx] = FluidSystem::inverseFormationVolumeFactor(fs_updated,
|
|
FluidSystem::gasPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
muOil[cellIdx] = FluidSystem::viscosity(fs_updated,
|
|
FluidSystem::oilPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
muGas[cellIdx] = FluidSystem::viscosity(fs_updated,
|
|
FluidSystem::gasPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
|
|
}
|
|
}
|
|
|
|
const size_t max_num_cells_faillog = 20;
|
|
|
|
int pb_size = failed_cells_pb.size(), pd_size = failed_cells_pd.size();
|
|
std::vector<int> displ_pb, displ_pd, recv_len_pb, recv_len_pd;
|
|
const auto& comm = grid_.comm();
|
|
|
|
if ( comm.rank() == 0 )
|
|
{
|
|
displ_pb.resize(comm.size()+1, 0);
|
|
displ_pd.resize(comm.size()+1, 0);
|
|
recv_len_pb.resize(comm.size());
|
|
recv_len_pd.resize(comm.size());
|
|
}
|
|
|
|
comm.gather(&pb_size, recv_len_pb.data(), 1, 0);
|
|
comm.gather(&pd_size, recv_len_pd.data(), 1, 0);
|
|
std::partial_sum(recv_len_pb.begin(), recv_len_pb.end(), displ_pb.begin()+1);
|
|
std::partial_sum(recv_len_pd.begin(), recv_len_pd.end(), displ_pd.begin()+1);
|
|
std::vector<int> global_failed_cells_pb, global_failed_cells_pd;
|
|
|
|
if ( comm.rank() == 0 )
|
|
{
|
|
global_failed_cells_pb.resize(displ_pb.back());
|
|
global_failed_cells_pd.resize(displ_pd.back());
|
|
}
|
|
|
|
comm.gatherv(failed_cells_pb.data(), static_cast<int>(failed_cells_pb.size()),
|
|
global_failed_cells_pb.data(), recv_len_pb.data(),
|
|
displ_pb.data(), 0);
|
|
comm.gatherv(failed_cells_pd.data(), static_cast<int>(failed_cells_pd.size()),
|
|
global_failed_cells_pd.data(), recv_len_pd.data(),
|
|
displ_pd.data(), 0);
|
|
std::sort(global_failed_cells_pb.begin(), global_failed_cells_pb.end());
|
|
std::sort(global_failed_cells_pd.begin(), global_failed_cells_pd.end());
|
|
|
|
if (global_failed_cells_pb.size() > 0) {
|
|
std::stringstream errlog;
|
|
errlog << "Finding the bubble point pressure failed for " << global_failed_cells_pb.size() << " cells [";
|
|
errlog << global_failed_cells_pb[0];
|
|
const size_t max_elems = std::min(max_num_cells_faillog, failed_cells_pb.size());
|
|
for (size_t i = 1; i < max_elems; ++i) {
|
|
errlog << ", " << global_failed_cells_pb[i];
|
|
}
|
|
if (global_failed_cells_pb.size() > max_num_cells_faillog) {
|
|
errlog << ", ...";
|
|
}
|
|
errlog << "]";
|
|
OpmLog::warning("Bubble point numerical problem", errlog.str());
|
|
}
|
|
if (global_failed_cells_pd.size() > 0) {
|
|
std::stringstream errlog;
|
|
errlog << "Finding the dew point pressure failed for " << global_failed_cells_pd.size() << " cells [";
|
|
errlog << global_failed_cells_pd[0];
|
|
const size_t max_elems = std::min(max_num_cells_faillog, global_failed_cells_pd.size());
|
|
for (size_t i = 1; i < max_elems; ++i) {
|
|
errlog << ", " << global_failed_cells_pd[i];
|
|
}
|
|
if (global_failed_cells_pd.size() > max_num_cells_faillog) {
|
|
errlog << ", ...";
|
|
}
|
|
errlog << "]";
|
|
OpmLog::warning("Dew point numerical problem", errlog.str());
|
|
}
|
|
|
|
return simData;
|
|
}
|
|
|
|
const FIPDataType& getFIPData() const {
|
|
return fip_;
|
|
}
|
|
|
|
const Simulator& ebosSimulator() const
|
|
{ return ebosSimulator_; }
|
|
|
|
/// return the statistics if the nonlinearIteration() method failed
|
|
const SimulatorReport& failureReport() const
|
|
{ return failureReport_; }
|
|
|
|
protected:
|
|
const ISTLSolverType& istlSolver() const
|
|
{
|
|
assert( istlSolver_ );
|
|
return *istlSolver_;
|
|
}
|
|
|
|
// --------- Data members ---------
|
|
|
|
Simulator& ebosSimulator_;
|
|
const Grid& grid_;
|
|
const ISTLSolverType* istlSolver_;
|
|
const PhaseUsage phaseUsage_;
|
|
const bool has_disgas_;
|
|
const bool has_vapoil_;
|
|
const bool has_solvent_;
|
|
const bool has_polymer_;
|
|
|
|
ModelParameters param_;
|
|
SimulatorReport failureReport_;
|
|
|
|
// Well Model
|
|
BlackoilWellModel<TypeTag>& well_model_;
|
|
|
|
/// \brief Whether we print something to std::cout
|
|
bool terminal_output_;
|
|
/// \brief The number of cells of the global grid.
|
|
long int global_nc_;
|
|
|
|
std::vector<std::vector<double>> residual_norms_history_;
|
|
double current_relaxation_;
|
|
BVector dx_old_;
|
|
mutable FIPDataType fip_;
|
|
|
|
public:
|
|
/// return the StandardWells object
|
|
BlackoilWellModel<TypeTag>&
|
|
wellModel() { return well_model_; }
|
|
|
|
const BlackoilWellModel<TypeTag>&
|
|
wellModel() const { return well_model_; }
|
|
|
|
int ebosPhaseToFlowCanonicalPhaseIdx( const int phaseIdx ) const
|
|
{
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::waterPhaseIdx == phaseIdx)
|
|
return Water;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::oilPhaseIdx == phaseIdx)
|
|
return Oil;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::gasPhaseIdx == phaseIdx)
|
|
return Gas;
|
|
|
|
assert(phaseIdx < 3);
|
|
// for other phases return the index
|
|
return phaseIdx;
|
|
}
|
|
|
|
void beginReportStep()
|
|
{
|
|
ebosSimulator_.problem().beginEpisode();
|
|
}
|
|
|
|
void endReportStep()
|
|
{
|
|
ebosSimulator_.problem().endEpisode();
|
|
}
|
|
|
|
private:
|
|
|
|
double dpMaxRel() const { return param_.dp_max_rel_; }
|
|
double dsMax() const { return param_.ds_max_; }
|
|
double drMaxRel() const { return param_.dr_max_rel_; }
|
|
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
|
|
|
|
public:
|
|
std::vector<bool> wasSwitched_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|