opm-simulators/opm/autodiff/NewtonIterationBlackoilCPR.cpp
2015-10-08 12:08:28 +02:00

201 lines
6.8 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
Copyright 2015 Statoil AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/DuneMatrix.hpp>
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
#include <opm/autodiff/NewtonIterationUtilities.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#if HAVE_UMFPACK
#include <Eigen/UmfPackSupport>
#else
#include <Eigen/SparseLU>
#endif
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
namespace Opm
{
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
/// Construct a system solver.
NewtonIterationBlackoilCPR::NewtonIterationBlackoilCPR(const parameter::ParameterGroup& param,
const boost::any& parallelInformation_arg)
: cpr_param_( param ),
iterations_( 0 ),
parallelInformation_(parallelInformation_arg),
newton_use_gmres_( param.getDefault("newton_use_gmres", false ) ),
linear_solver_reduction_( param.getDefault("linear_solver_reduction", 1e-2 ) ),
linear_solver_maxiter_( param.getDefault("linear_solver_maxiter", 50 ) ),
linear_solver_restart_( param.getDefault("linear_solver_restart", 40 ) ),
linear_solver_verbosity_( param.getDefault("linear_solver_verbosity", 0 ))
{
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
NewtonIterationBlackoilCPR::SolutionVector
NewtonIterationBlackoilCPR::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
// Build the vector of equations.
const int np = residual.material_balance_eq.size();
std::vector<ADB> eqs;
eqs.reserve(np + 2);
for (int phase = 0; phase < np; ++phase) {
eqs.push_back(residual.material_balance_eq[phase]);
}
// check if wells are present
const bool hasWells = residual.well_flux_eq.size() > 0 ;
std::vector<ADB> elim_eqs;
if( hasWells )
{
eqs.push_back(residual.well_flux_eq);
eqs.push_back(residual.well_eq);
// Eliminate the well-related unknowns, and corresponding equations.
elim_eqs.reserve(2);
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
assert(int(eqs.size()) == np);
}
// Scale material balance equations.
for (int phase = 0; phase < np; ++phase) {
eqs[phase] = eqs[phase] * residual.matbalscale[phase];
}
// Add material balance equations (or other manipulations) to
// form pressure equation in top left of full system.
Eigen::SparseMatrix<double, Eigen::RowMajor> A;
V b;
formEllipticSystem(np, eqs, A, b);
// Scale pressure equation.
const double pscale = 200*unit::barsa;
const int nc = residual.material_balance_eq[0].size();
A.topRows(nc) *= pscale;
b.topRows(nc) *= pscale;
// Solve reduced system.
SolutionVector dx(SolutionVector::Zero(b.size()));
// Create ISTL matrix.
DuneMatrix istlA( A );
// Create ISTL matrix for elliptic part.
DuneMatrix istlAe( A.topLeftCorner(nc, nc) );
// Right hand side.
Vector istlb(istlA.N());
std::copy_n(b.data(), istlb.size(), istlb.begin());
// System solution
Vector x(istlA.M());
x = 0.0;
Dune::InverseOperatorResult result;
#if HAVE_MPI
if(parallelInformation_.type()==typeid(ParallelISTLInformation))
{
typedef Dune::OwnerOverlapCopyCommunication<int,int> Comm;
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
Comm istlComm(info.communicator());
Comm istlAeComm(info.communicator());
info.copyValuesTo(istlAeComm.indexSet(), istlAeComm.remoteIndices());
info.copyValuesTo(istlComm.indexSet(), istlComm.remoteIndices(),
istlAe.N(), istlA.N()/istlAe.N());
// Construct operator, scalar product and vectors needed.
typedef Dune::OverlappingSchwarzOperator<Mat,Vector,Vector,Comm> Operator;
Operator opA(istlA, istlComm);
constructPreconditionerAndSolve<Dune::SolverCategory::overlapping>(opA, istlAe, x, istlb, istlComm, istlAeComm, result);
}
else
#endif
{
// Construct operator, scalar product and vectors needed.
typedef Dune::MatrixAdapter<Mat,Vector,Vector> Operator;
Operator opA(istlA);
Dune::Amg::SequentialInformation info;
constructPreconditionerAndSolve(opA, istlAe, x, istlb, info, info, result);
}
// store number of iterations
iterations_ = result.iterations;
// Check for failure of linear solver.
if (!result.converged) {
OPM_THROW(LinearSolverProblem, "Convergence failure for linear solver.");
}
// Copy solver output to dx.
std::copy(x.begin(), x.end(), dx.data());
if ( hasWells ) {
// Compute full solution using the eliminated equations.
// Recovery in inverse order of elimination.
dx = recoverVariable(elim_eqs[1], dx, np);
dx = recoverVariable(elim_eqs[0], dx, np);
}
return dx;
}
const boost::any& NewtonIterationBlackoilCPR::parallelInformation() const
{
return parallelInformation_;
}
} // namespace Opm