opm-simulators/opm/core/flowdiagnostics/TofReorder.cpp
2018-02-10 08:33:33 +01:00

454 lines
18 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/flowdiagnostics/TofReorder.hpp>
#include <opm/grid/UnstructuredGrid.h>
#include <opm/common/ErrorMacros.hpp>
#include <opm/grid/utility/SparseTable.hpp>
#include <algorithm>
#include <numeric>
#include <cmath>
#include <iostream>
namespace Opm
{
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] use_multidim_upwind If true, use multidimensional tof upwinding.
TofReorder::TofReorder(const UnstructuredGrid& grid,
const bool use_multidim_upwind)
: grid_(grid),
darcyflux_(0),
porevolume_(0),
source_(0),
tof_(0),
gauss_seidel_tol_(1e-3),
use_multidim_upwind_(use_multidim_upwind)
{
}
/// Solve for time-of-flight.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[out] tof Array of time-of-flight values.
void TofReorder::solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
std::vector<double>& tof)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
#ifndef NDEBUG
// Sanity check for sources.
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
// OPM_THROW(std::runtime_error, "Sources do not sum to zero: " << cum_src);
OPM_MESSAGE("Warning: sources do not sum to zero: " << cum_src);
}
#endif
tof.resize(grid_.number_of_cells);
std::fill(tof.begin(), tof.end(), 0.0);
tof_ = &tof[0];
if (use_multidim_upwind_) {
face_tof_.resize(grid_.number_of_faces);
std::fill(face_tof_.begin(), face_tof_.end(), 0.0);
face_part_tof_.resize(grid_.face_nodepos[grid_.number_of_faces]);
std::fill(face_part_tof_.begin(), face_part_tof_.end(), 0.0);
}
compute_tracer_ = false;
executeSolve();
}
/// Solve for time-of-flight and a number of tracers.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[in] tracerheads Table containing one row per tracer, and each
/// row contains the source cells for that tracer.
/// \param[out] tof Array of time-of-flight values (1 per cell).
/// \param[out] tracer Array of tracer values. N per cell, where N is
/// equalt to tracerheads.size().
void TofReorder::solveTofTracer(const double* darcyflux,
const double* porevolume,
const double* source,
const SparseTable<int>& tracerheads,
std::vector<double>& tof,
std::vector<double>& tracer)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
const int num_cells = grid_.number_of_cells;
#ifndef NDEBUG
// Sanity check for sources.
const double cum_src = std::accumulate(source, source + num_cells, 0.0);
if (std::fabs(cum_src) > *std::max_element(source, source + num_cells)*1e-2) {
OPM_THROW(std::runtime_error, "Sources do not sum to zero: " << cum_src);
}
#endif
tof.resize(num_cells);
std::fill(tof.begin(), tof.end(), 0.0);
tof_ = &tof[0];
if (use_multidim_upwind_) {
face_tof_.resize(grid_.number_of_faces);
std::fill(face_tof_.begin(), face_tof_.end(), 0.0);
face_part_tof_.resize(grid_.face_nodepos[grid_.number_of_faces]);
std::fill(face_part_tof_.begin(), face_part_tof_.end(), 0.0);
}
// Execute solve for tof
compute_tracer_ = false;
executeSolve();
// Find the tracer heads (injectors).
const int num_tracers = tracerheads.size();
tracer.resize(num_cells*num_tracers);
std::fill(tracer.begin(), tracer.end(), 0.0);
if (num_tracers > 0) {
tracerhead_by_cell_.clear();
tracerhead_by_cell_.resize(num_cells, NoTracerHead);
}
for (int tr = 0; tr < num_tracers; ++tr) {
const unsigned int tracerheadsSize = tracerheads[tr].size();
for (unsigned int i = 0; i < tracerheadsSize; ++i) {
const int cell = tracerheads[tr][i];
tracer[num_cells * tr + cell] = 1.0;
tracerhead_by_cell_[cell] = tr;
}
}
// Execute solve for tracers.
std::vector<double> fake_pv(num_cells, 0.0);
porevolume_ = fake_pv.data();
for (int tr = 0; tr < num_tracers; ++tr) {
tof_ = tracer.data() + tr * num_cells;
compute_tracer_ = true;
executeSolve();
}
// Write output tracer data (transposing the computed data).
std::vector<double> computed = tracer;
for (int cell = 0; cell < num_cells; ++cell) {
for (int tr = 0; tr < num_tracers; ++tr) {
tracer[num_tracers * cell + tr] = computed[num_cells * tr + cell];
}
}
}
void TofReorder::executeSolve()
{
num_multicell_ = 0;
max_size_multicell_ = 0;
max_iter_multicell_ = 0;
reorderAndTransport(grid_, darcyflux_);
if (num_multicell_ > 0) {
std::cout << num_multicell_ << " multicell blocks with max size "
<< max_size_multicell_ << " cells in upto "
<< max_iter_multicell_ << " iterations." << std::endl;
}
}
void TofReorder::solveSingleCell(const int cell)
{
if (use_multidim_upwind_) {
solveSingleCellMultidimUpwind(cell);
return;
}
// Compute flux terms.
// Sources have zero tof, and therefore do not contribute
// to upwind_term. Sinks on the other hand, must be added
// to the downwind_flux (note sign change resulting from
// different sign conventions: pos. source is injection,
// pos. flux is outflow).
if (compute_tracer_ && tracerhead_by_cell_[cell] != NoTracerHead) {
// This is a tracer head cell, already has solution.
return;
}
double upwind_term = 0.0;
double downwind_flux = std::max(-source_[cell], 0.0);
for (int i = grid_.cell_facepos[cell]; i < grid_.cell_facepos[cell+1]; ++i) {
int f = grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == grid_.face_cells[2*f]) {
flux = darcyflux_[f];
other = grid_.face_cells[2*f+1];
} else {
flux =-darcyflux_[f];
other = grid_.face_cells[2*f];
}
// Add flux to upwind_term or downwind_flux
if (flux < 0.0) {
// Using tof == 0 on inflow, so we only add a
// nonzero contribution if we are on an internal
// face.
if (other != -1) {
upwind_term += flux*tof_[other];
}
} else {
downwind_flux += flux;
}
}
// Compute tof.
tof_[cell] = (porevolume_[cell] - upwind_term)/downwind_flux;
}
void TofReorder::solveSingleCellMultidimUpwind(const int cell)
{
// Compute flux terms.
// Sources have zero tof, and therefore do not contribute
// to upwind_term. Sinks on the other hand, must be added
// to the downwind terms (note sign change resulting from
// different sign conventions: pos. source is injection,
// pos. flux is outflow).
double upwind_term = 0.0;
double downwind_term_cell_factor = std::max(-source_[cell], 0.0);
double downwind_term_face = 0.0;
for (int i = grid_.cell_facepos[cell]; i < grid_.cell_facepos[cell+1]; ++i) {
int f = grid_.cell_faces[i];
double flux;
// Compute cell flux
if (cell == grid_.face_cells[2*f]) {
flux = darcyflux_[f];
} else {
flux =-darcyflux_[f];
}
// Add flux to upwind_term or downwind_term_[face|cell_factor].
if (flux < 0.0) {
upwind_term += flux*face_tof_[f];
} else if (flux > 0.0) {
double fterm, cterm_factor;
multidimUpwindTerms(f, cell, fterm, cterm_factor);
downwind_term_face += fterm*flux;
downwind_term_cell_factor += cterm_factor*flux;
}
}
// Compute tof for cell.
if (compute_tracer_ && tracerhead_by_cell_[cell] != NoTracerHead) {
// Do nothing to the value in this cell, since we are at a tracer head.
} else {
tof_[cell] = (porevolume_[cell] - upwind_term - downwind_term_face)/downwind_term_cell_factor;
}
// Compute tof for downwind faces.
for (int i = grid_.cell_facepos[cell]; i < grid_.cell_facepos[cell+1]; ++i) {
int f = grid_.cell_faces[i];
const double outflux_f = (grid_.face_cells[2*f] == cell) ? darcyflux_[f] : -darcyflux_[f];
if (outflux_f > 0.0) {
double fterm, cterm_factor;
multidimUpwindTerms(f, cell, fterm, cterm_factor);
face_tof_[f] = fterm + cterm_factor*tof_[cell];
// Combine locally computed (for each adjacent vertex) terms, with uniform weighting.
const int* face_nodes_beg = grid_.face_nodes + grid_.face_nodepos[f];
const int* face_nodes_end = grid_.face_nodes + grid_.face_nodepos[f + 1];
assert((face_nodes_end - face_nodes_beg) == 2 || grid_.dimensions != 2);
for (const int* fn_iter = face_nodes_beg; fn_iter < face_nodes_end; ++fn_iter) {
double loc_face_term = 0.0;
double loc_cell_term_factor = 0.0;
const int node_pos = fn_iter - grid_.face_nodes;
localMultidimUpwindTerms(f, cell, node_pos,
loc_face_term, loc_cell_term_factor);
face_part_tof_[node_pos] = loc_face_term + loc_cell_term_factor * tof_[cell];
}
}
}
}
void TofReorder::solveMultiCell(const int num_cells, const int* cells)
{
++num_multicell_;
max_size_multicell_ = std::max(max_size_multicell_, num_cells);
// std::cout << "Multiblock solve with " << num_cells << " cells." << std::endl;
// Using a Gauss-Seidel approach.
double max_delta = 1e100;
int num_iter = 0;
while (max_delta > gauss_seidel_tol_) {
max_delta = 0.0;
++num_iter;
for (int ci = 0; ci < num_cells; ++ci) {
const int cell = cells[ci];
const double tof_before = tof_[cell];
solveSingleCell(cell);
max_delta = std::max(max_delta, std::fabs(tof_[cell] - tof_before));
}
// std::cout << "Max delta = " << max_delta << std::endl;
}
max_iter_multicell_ = std::max(max_iter_multicell_, num_iter);
}
// Assumes that face_part_tof_[node_pos] is known for all inflow
// faces to 'upwind_cell' sharing vertices with 'face'. The index
// 'node_pos' is the same as the one used for the grid face-node
// connectivity.
// Assumes that darcyflux_[face] is != 0.0.
// This function returns factors to compute the tof for 'face':
// tof(face) = face_term + cell_term_factor*tof(upwind_cell).
// It is not computed here, since these factors are needed to
// compute the tof(upwind_cell) itself.
void TofReorder::multidimUpwindTerms(const int face,
const int upwind_cell,
double& face_term,
double& cell_term_factor) const
{
// Implements multidim upwind inspired by
// "Multidimensional upstream weighting for multiphase transport on general grids"
// by Keilegavlen, Kozdon, Mallison.
// However, that article does not give a 3d extension other than noting that using
// multidimensional upwinding in the XY-plane and not in the Z-direction may be
// a good idea. We have here attempted some generalization, by treating each face-part
// (association of a face and a vertex) as possibly influencing all downwind face-parts
// of the neighbouring cell that share the same vertex.
// The current implementation aims to reproduce 2d results for extruded 3d grids.
// Combine locally computed (for each adjacent vertex) terms, with uniform weighting.
const int* face_nodes_beg = grid_.face_nodes + grid_.face_nodepos[face];
const int* face_nodes_end = grid_.face_nodes + grid_.face_nodepos[face + 1];
const int num_terms = face_nodes_end - face_nodes_beg;
assert(num_terms == 2 || grid_.dimensions != 2);
face_term = 0.0;
cell_term_factor = 0.0;
for (const int* fn_iter = face_nodes_beg; fn_iter < face_nodes_end; ++fn_iter) {
double loc_face_term = 0.0;
double loc_cell_term_factor = 0.0;
localMultidimUpwindTerms(face, upwind_cell, fn_iter - grid_.face_nodes,
loc_face_term, loc_cell_term_factor);
face_term += loc_face_term;
cell_term_factor += loc_cell_term_factor;
}
face_term /= double(num_terms);
cell_term_factor /= double(num_terms);
}
namespace {
double weightFunc(const double w)
{
// SPU
// return 0.0;
// TMU
return w > 0.0 ? std::min(w, 1.0) : 0.0;
// SMU
// return w > 0.0 ? w/(1.0 + w) : 0.0;
}
}
void TofReorder::localMultidimUpwindTerms(const int face,
const int upwind_cell,
const int node_pos,
double& face_term,
double& cell_term_factor) const
{
// Loop over all faces adjacent to the given cell and the
// vertex in position node_pos.
// If that part's influx is positive, we store it, and also its associated
// node position.
std::vector<double> influx;
std::vector<int> node_pos_influx;
influx.reserve(5);
node_pos_influx.reserve(5);
const int node = grid_.face_nodes[node_pos];
for (int hf = grid_.cell_facepos[upwind_cell]; hf < grid_.cell_facepos[upwind_cell + 1]; ++hf) {
const int f = grid_.cell_faces[hf];
if (f != face) {
// Find out if the face 'f' is adjacent to vertex 'node'.
const int* f_nodes_beg = grid_.face_nodes + grid_.face_nodepos[f];
const int* f_nodes_end = grid_.face_nodes + grid_.face_nodepos[f + 1];
const int* pos = std::find(f_nodes_beg, f_nodes_end, node);
const int node_pos2 = pos - grid_.face_nodes;
const bool is_adj = (pos != f_nodes_end);
if (is_adj) {
const int num_parts = f_nodes_end - f_nodes_beg;
const double influx_sign = (grid_.face_cells[2*f] == upwind_cell) ? -1.0 : 1.0;
const double part_influx = influx_sign * darcyflux_[f] / double(num_parts);
if (part_influx > 0.0) {
influx.push_back(part_influx);
node_pos_influx.push_back(node_pos2);
}
}
}
}
// Now we may compute the weighting of the upwind terms.
const int num_parts = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
const double outflux_sign = (grid_.face_cells[2*face] == upwind_cell) ? 1.0 : -1.0;
const double part_outflux = outflux_sign * darcyflux_[face] / double(num_parts);
const double sum_influx = std::accumulate(influx.begin(), influx.end(), 0.0);
const double w_factor = weightFunc(sum_influx / part_outflux);
const int num_influx = influx.size();
std::vector<double> w(num_influx);
face_term = 0.0;
for (int ii = 0; ii < num_influx; ++ii) {
w[ii] = (influx[ii] / sum_influx) * w_factor;
face_term += w[ii] * face_part_tof_[node_pos_influx[ii]];
}
const double sum_w = std::accumulate(w.begin(), w.end(), 0.0);
cell_term_factor = 1.0 - sum_w;
const double tol = 1e-5;
if (cell_term_factor < -tol && cell_term_factor > 1.0 + tol) {
OPM_THROW(std::logic_error, "cell_term_factor outside [0,1]: " << cell_term_factor);
}
cell_term_factor = std::min(std::max(cell_term_factor, 0.0), 1.0);
assert(cell_term_factor >= 0.0);
assert(cell_term_factor <= 1.0);
}
} // namespace Opm