mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-28 02:00:59 -06:00
e4d6acc23b
prefer anonymous parameters and c++17 [[maybe_unused]]
321 lines
10 KiB
C++
321 lines
10 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Opm::Linear::WeightedResidualReductionCriterion
|
|
*/
|
|
#ifndef EWOMS_WEIGHTED_RESIDUAL_REDUCTION_CRITERION_HH
|
|
#define EWOMS_WEIGHTED_RESIDUAL_REDUCTION_CRITERION_HH
|
|
|
|
#include "convergencecriterion.hh"
|
|
|
|
#include <iostream>
|
|
|
|
namespace Opm {
|
|
namespace Linear {
|
|
|
|
/*! \addtogroup Linear
|
|
* \{
|
|
*/
|
|
|
|
/*!
|
|
* \brief Convergence criterion which looks at the weighted absolute
|
|
* value of the residual
|
|
*
|
|
* For the WeightedResidualReductionCriterion, the error of the
|
|
* solution is defined as
|
|
* \f[ e^k = \max_i\{ \left| w_i r^k_i \right| \}\;, \f]
|
|
*
|
|
* where \f$r^k = \mathbf{A} x^k - b \f$ is the residual for the
|
|
* k-th iterative solution vector \f$x^k\f$ and \f$w_i\f$ is the
|
|
* weight of the \f$i\f$-th linear equation.
|
|
*
|
|
* In addition, to the reduction of the maximum defect, the linear
|
|
* solver is also considered to be converged, if the defect goes below
|
|
* a given absolute limit.
|
|
*/
|
|
template <class Vector, class CollectiveCommunication>
|
|
class WeightedResidualReductionCriterion : public ConvergenceCriterion<Vector>
|
|
{
|
|
using Scalar = typename Vector::field_type;
|
|
using BlockType = typename Vector::block_type;
|
|
|
|
public:
|
|
WeightedResidualReductionCriterion(const CollectiveCommunication& comm)
|
|
: comm_(comm)
|
|
{}
|
|
|
|
WeightedResidualReductionCriterion(const CollectiveCommunication& comm,
|
|
const Vector& residWeights,
|
|
Scalar residualReductionTolerance,
|
|
Scalar fixPointTolerance,
|
|
Scalar absResidualTolerance = 0.0,
|
|
Scalar maxError = 0.0)
|
|
: comm_(comm),
|
|
residWeightVec_(residWeights),
|
|
fixPointTolerance_(fixPointTolerance),
|
|
residualReductionTolerance_(residualReductionTolerance),
|
|
absResidualTolerance_(absResidualTolerance),
|
|
maxError_(maxError)
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Sets the relative weight of each row of the residual.
|
|
*
|
|
* For the WeightedResidualReductionCriterion, the error of the solution is
|
|
* defined as
|
|
* \f[ e^k = \max_i\{ \left| w_i r^k_i \right| \}\;, \f]
|
|
*
|
|
* where \f$r^k = \mathbf{A} x^k - b \f$ is the residual for the
|
|
* k-th iterative solution vector \f$x^k\f$ and \f$w_i\f$ is the
|
|
* weight of the \f$i\f$-th linear equation.
|
|
*
|
|
* This method is not part of the generic ConvergenceCriteria interface.
|
|
*
|
|
* \param residWeightVec A Dune::BlockVector<Dune::FieldVector<Scalar, n> >
|
|
* with the relative weights of the linear equations
|
|
*/
|
|
void setResidualWeight(const Vector& residWeightVec)
|
|
{ residWeightVec_ = residWeightVec; }
|
|
|
|
/*!
|
|
* \brief Return the relative weight of a row of the residual.
|
|
*
|
|
* \param outerIdx The index of the outer vector (i.e. Dune::BlockVector)
|
|
* \param innerIdx The index of the inner vector (i.e. Dune::FieldVector)
|
|
*/
|
|
Scalar residualWeight(size_t outerIdx, unsigned innerIdx) const
|
|
{
|
|
return (residWeightVec_.size() == 0)
|
|
? 1.0
|
|
: residWeightVec_[outerIdx][innerIdx];
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the residual reduction tolerance.
|
|
*/
|
|
void setResidualReductionTolerance(Scalar tol)
|
|
{ residualReductionTolerance_ = tol; }
|
|
|
|
/*!
|
|
* \brief Returns the tolerance of the residual reduction of the solution.
|
|
*/
|
|
Scalar residualReductionTolerance() const
|
|
{ return residualReductionTolerance_; }
|
|
|
|
/*!
|
|
* \brief Sets the maximum absolute tolerated residual.
|
|
*/
|
|
void setResidualTolerance(Scalar tol)
|
|
{ absResidualTolerance_ = tol; }
|
|
|
|
/*!
|
|
* \brief Returns the maximum absolute tolerated residual.
|
|
*/
|
|
Scalar absResidualTolerance() const
|
|
{ return absResidualTolerance_; }
|
|
|
|
/*!
|
|
* \brief Returns the reduction of the weighted maximum of the
|
|
* residual compared to the initial solution.
|
|
*/
|
|
Scalar residualAccuracy() const
|
|
{ return residualError_/std::max<Scalar>(1e-20, initialResidualError_); }
|
|
|
|
/*!
|
|
* \brief Sets the fix-point tolerance.
|
|
*/
|
|
void setFixPointTolerance(Scalar tol)
|
|
{ fixPointTolerance_ = tol; }
|
|
|
|
/*!
|
|
* \brief Returns the maximum tolerated difference between two
|
|
* iterations to be met before a solution is considered to be
|
|
* converged.
|
|
*/
|
|
Scalar fixPointTolerance() const
|
|
{ return fixPointTolerance_; }
|
|
|
|
/*!
|
|
* \brief Returns the weighted maximum of the difference
|
|
* between the last two iterative solutions.
|
|
*/
|
|
Scalar fixPointAccuracy() const
|
|
{ return fixPointError_; }
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::setInitial(const Vector& , const Vector& )
|
|
*/
|
|
void setInitial(const Vector& curSol, const Vector& curResid)
|
|
{
|
|
lastResidualError_ = 1e100;
|
|
|
|
lastSolVec_ = curSol;
|
|
updateErrors_(curSol, curResid);
|
|
// the fix-point error is not applicable for the initial solution!
|
|
fixPointError_ = 1e100;
|
|
|
|
// make sure that we don't allow an initial error of 0 to avoid
|
|
// divisions by zero
|
|
residualError_ = std::max<Scalar>(residualError_, 1e-20);
|
|
initialResidualError_ = residualError_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::update(const Vector& , const Vector& )
|
|
*/
|
|
void update(const Vector& curSol,
|
|
const Vector&,
|
|
const Vector& curResid)
|
|
{
|
|
lastResidualError_ = residualError_;
|
|
updateErrors_(curSol, curResid);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::converged()
|
|
*/
|
|
bool converged() const
|
|
{
|
|
// we're converged if the solution is better than the tolerance
|
|
// fix-point and residual tolerance.
|
|
return
|
|
residualAccuracy() <= residualReductionTolerance() ||
|
|
residualError_ <= absResidualTolerance_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::failed()
|
|
*/
|
|
bool failed() const
|
|
{
|
|
return
|
|
(!converged() && fixPointError_ <= fixPointTolerance_)
|
|
|| residualError_ > maxError_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::accuracy()
|
|
*
|
|
* For the accuracy we only take the residual into account,
|
|
*/
|
|
Scalar accuracy() const
|
|
{ return residualError_; }
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::printInitial()
|
|
*/
|
|
void printInitial(std::ostream& os = std::cout) const
|
|
{
|
|
os << std::setw(20) << " Iter ";
|
|
os << std::setw(20) << " Delta ";
|
|
os << std::setw(20) << " Residual ";
|
|
os << std::setw(20) << " ResidRed ";
|
|
os << std::setw(20) << " Rate ";
|
|
os << std::endl;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::print()
|
|
*/
|
|
void print(Scalar iter, std::ostream& os = std::cout) const
|
|
{
|
|
static constexpr Scalar eps = std::numeric_limits<Scalar>::min()*1e10;
|
|
|
|
os << std::setw(20) << iter << " ";
|
|
os << std::setw(20) << fixPointAccuracy() << " ";
|
|
os << std::setw(20) << residualError_ << " ";
|
|
os << std::setw(20) << 1.0/residualAccuracy() << " ";
|
|
os << std::setw(20) << lastResidualError_ / std::max<Scalar>(residualError_, eps) << " ";
|
|
os << std::endl << std::flush;
|
|
}
|
|
|
|
private:
|
|
// update the weighted absolute residual
|
|
void updateErrors_(const Vector& curSol, const Vector& curResid)
|
|
{
|
|
residualError_ = 0.0;
|
|
fixPointError_ = 0.0;
|
|
for (size_t i = 0; i < curResid.size(); ++i) {
|
|
for (unsigned j = 0; j < BlockType::dimension; ++j) {
|
|
residualError_ =
|
|
std::max<Scalar>(residualError_,
|
|
residualWeight(i, j)*std::abs(curResid[i][j]));
|
|
fixPointError_ =
|
|
std::max<Scalar>(fixPointError_,
|
|
std::abs(curSol[i][j] - lastSolVec_[i][j])
|
|
/std::max<Scalar>(1.0, curSol[i][j]));
|
|
}
|
|
}
|
|
lastSolVec_ = curSol;
|
|
|
|
residualError_ = comm_.max(residualError_);
|
|
fixPointError_ = comm_.max(fixPointError_);
|
|
}
|
|
|
|
const CollectiveCommunication& comm_;
|
|
|
|
// the weights of the components of the residual
|
|
Vector residWeightVec_;
|
|
|
|
// solution vector of the last iteration
|
|
Vector lastSolVec_;
|
|
|
|
// the maximum of the weighted difference between the last two
|
|
// iterations
|
|
Scalar fixPointError_;
|
|
|
|
// the maximum allowed relative tolerance for difference of the
|
|
// solution of two iterations
|
|
Scalar fixPointTolerance_;
|
|
|
|
// the maximum of the absolute weighted residual of the last
|
|
// iteration
|
|
Scalar residualError_;
|
|
|
|
// the maximum of the absolute weighted difference of the last
|
|
// iteration
|
|
Scalar lastResidualError_;
|
|
|
|
// the maximum of the absolute weighted residual of the initial
|
|
// solution
|
|
Scalar initialResidualError_;
|
|
|
|
// the maximum allowed relative tolerance of the residual for the
|
|
// solution to be considered converged
|
|
Scalar residualReductionTolerance_;
|
|
|
|
// the maximum allowed absolute tolerance of the residual for the
|
|
// solution to be considered converged
|
|
Scalar absResidualTolerance_;
|
|
|
|
// The maximum error which is tolerated before we fail.
|
|
Scalar maxError_;
|
|
};
|
|
|
|
//! \} end documentation
|
|
|
|
}} // end namespace Linear, Opm
|
|
|
|
#endif
|