opm-simulators/opm/simulators/linalg/ISTLSolverEbos.hpp
2019-09-19 11:14:36 +02:00

878 lines
36 KiB
C++

/*
Copyright 2016 IRIS AS
Copyright 2019 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
#define OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
#include <opm/simulators/linalg/MatrixBlock.hpp>
#include <opm/simulators/linalg/BlackoilAmg.hpp>
#include <opm/simulators/linalg/CPRPreconditioner.hpp>
#include <opm/simulators/linalg/ParallelRestrictedAdditiveSchwarz.hpp>
#include <opm/simulators/linalg/ParallelOverlappingILU0.hpp>
#include <opm/simulators/linalg/ExtractParallelGridInformationToISTL.hpp>
#include <opm/simulators/linalg/findOverlapRowsAndColumns.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/simulators/linalg/ParallelIstlInformation.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/models/utils/parametersystem.hh>
#include <opm/models/utils/propertysystem.hh>
#include <dune/istl/scalarproducts.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/amg.hh>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
BEGIN_PROPERTIES
NEW_TYPE_TAG(FlowIstlSolver, INHERITS_FROM(FlowIstlSolverParams));
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(GlobalEqVector);
NEW_PROP_TAG(SparseMatrixAdapter);
NEW_PROP_TAG(Indices);
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(EclWellModel);
//! Set the type of a global jacobian matrix for linear solvers that are based on
//! dune-istl.
SET_PROP(FlowIstlSolver, SparseMatrixAdapter)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
typedef Opm::MatrixBlock<Scalar, numEq, numEq> Block;
public:
typedef typename Opm::Linear::IstlSparseMatrixAdapter<Block> type;
};
END_PROPERTIES
namespace Opm
{
template <class DenseMatrix>
DenseMatrix transposeDenseMatrix(const DenseMatrix& M)
{
DenseMatrix tmp;
for (int i = 0; i < M.rows; ++i)
for (int j = 0; j < M.cols; ++j)
tmp[j][i] = M[i][j];
return tmp;
}
//=====================================================================
// Implementation for ISTL-matrix based operator
//=====================================================================
/*!
\brief Adapter to turn a matrix into a linear operator.
Adapts a matrix to the assembled linear operator interface
*/
template<class M, class X, class Y, class WellModel, bool overlapping >
class WellModelMatrixAdapter : public Dune::AssembledLinearOperator<M,X,Y>
{
typedef Dune::AssembledLinearOperator<M,X,Y> BaseType;
public:
typedef M matrix_type;
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication<int,int> communication_type;
#else
typedef Dune::CollectiveCommunication< int > communication_type;
#endif
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::SolverCategory::Category category() const override
{
return overlapping ?
Dune::SolverCategory::overlapping : Dune::SolverCategory::sequential;
}
#else
enum {
//! \brief The solver category.
category = overlapping ?
Dune::SolverCategory::overlapping :
Dune::SolverCategory::sequential
};
#endif
//! constructor: just store a reference to a matrix
WellModelMatrixAdapter (const M& A,
const M& A_for_precond,
const WellModel& wellMod,
const boost::any& parallelInformation OPM_UNUSED_NOMPI = boost::any() )
: A_( A ), A_for_precond_(A_for_precond), wellMod_( wellMod ), comm_()
{
#if HAVE_MPI
if( parallelInformation.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation);
comm_.reset( new communication_type( info.communicator() ) );
}
#endif
}
WellModelMatrixAdapter (const M& A,
const M& A_for_precond,
const WellModel& wellMod,
std::shared_ptr<communication_type> comm )
: A_( A ), A_for_precond_(A_for_precond), wellMod_( wellMod ), comm_(comm)
{
}
virtual void apply( const X& x, Y& y ) const override
{
A_.mv( x, y );
// add well model modification to y
wellMod_.apply(x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
// y += \alpha * A * x
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const override
{
A_.usmv(alpha,x,y);
// add scaled well model modification to y
wellMod_.applyScaleAdd( alpha, x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
virtual const matrix_type& getmat() const override { return A_for_precond_; }
std::shared_ptr<communication_type> comm()
{
return comm_;
}
protected:
const matrix_type& A_ ;
const matrix_type& A_for_precond_ ;
const WellModel& wellMod_;
std::shared_ptr< communication_type > comm_;
};
/// This class solves the fully implicit black-oil system by
/// solving the reduced system (after eliminating well variables)
/// as a block-structured matrix (one block for all cell variables) for a fixed
/// number of cell variables np .
template <class TypeTag>
class ISTLSolverEbos
{
protected:
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter) SparseMatrixAdapter;
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) Vector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, EclWellModel) WellModel;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename SparseMatrixAdapter::IstlMatrix Matrix;
typedef typename SparseMatrixAdapter::MatrixBlock MatrixBlockType;
typedef typename Vector::block_type BlockVector;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ThreadManager) ThreadManager;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
// Due to miscibility oil <-> gas the water eqn is the one we can replace with a pressure equation.
static const bool waterEnabled = Indices::waterEnabled;
static const int pindex = (waterEnabled) ? BlackOilDefaultIndexTraits::waterCompIdx : BlackOilDefaultIndexTraits::oilCompIdx;
enum { pressureEqnIndex = pindex };
enum { pressureVarIndex = Indices::pressureSwitchIdx };
static const int numEq = Indices::numEq;
public:
typedef Dune::AssembledLinearOperator< Matrix, Vector, Vector > AssembledLinearOperatorType;
static void registerParameters()
{
FlowLinearSolverParameters::registerParameters<TypeTag>();
}
/// Construct a system solver.
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
ISTLSolverEbos(const Simulator& simulator)
: simulator_(simulator),
iterations_( 0 ),
converged_(false)
{
parameters_.template init<TypeTag>();
extractParallelGridInformationToISTL(simulator_.vanguard().grid(), parallelInformation_);
detail::findOverlapRowsAndColumns(simulator_.vanguard().grid(),overlapRowAndColumns_);
}
// nothing to clean here
void eraseMatrix() {
matrix_for_preconditioner_.reset();
}
void prepare(const SparseMatrixAdapter& M, Vector& b)
{
matrix_.reset(new Matrix(M.istlMatrix()));
rhs_ = &b;
this->scaleSystem();
}
void scaleSystem()
{
const bool matrix_cont_added = EWOMS_GET_PARAM(TypeTag, bool, MatrixAddWellContributions);
if (matrix_cont_added) {
bool form_cpr = true;
if (parameters_.system_strategy_ == "quasiimpes") {
weights_ = getQuasiImpesWeights();
} else if (parameters_.system_strategy_ == "trueimpes") {
weights_ = getStorageWeights();
} else if (parameters_.system_strategy_ == "simple") {
BlockVector bvec(1.0);
weights_ = getSimpleWeights(bvec);
} else if (parameters_.system_strategy_ == "original") {
BlockVector bvec(0.0);
bvec[pressureEqnIndex] = 1;
weights_ = getSimpleWeights(bvec);
} else {
if (parameters_.system_strategy_ != "none") {
OpmLog::warning("unknown_system_strategy", "Unknown linear solver system strategy: '" + parameters_.system_strategy_ + "', applying 'none' strategy.");
}
form_cpr = false;
}
if (parameters_.scale_linear_system_) {
// also scale weights
this->scaleEquationsAndVariables(weights_);
}
if (form_cpr && !(parameters_.cpr_use_drs_)) {
scaleMatrixAndRhs(weights_);
}
if (weights_.size() == 0) {
// if weights are not set cpr_use_drs_=false;
parameters_.cpr_use_drs_ = false;
}
} else {
if (parameters_.use_cpr_ && parameters_.cpr_use_drs_) {
OpmLog::warning("DRS_DISABLE", "Disabling DRS as matrix does not contain well contributions");
}
parameters_.cpr_use_drs_ = false;
if (parameters_.scale_linear_system_) {
// also scale weights
this->scaleEquationsAndVariables(weights_);
}
}
}
void setResidual(Vector& /* b */) {
// rhs_ = &b; // Must be handled in prepare() instead.
}
void getResidual(Vector& b) const {
b = *rhs_;
}
void setMatrix(const SparseMatrixAdapter& /* M */) {
// matrix_ = &M.istlMatrix(); // Must be handled in prepare() instead.
}
bool solve(Vector& x) {
// Solve system.
const WellModel& wellModel = simulator_.problem().wellModel();
if( isParallel() )
{
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, WellModel, true > Operator;
auto ebosJacIgnoreOverlap = Matrix(*matrix_);
//remove ghost rows in local matrix
makeOverlapRowsInvalid(ebosJacIgnoreOverlap);
//Not sure what actual_mat_for_prec is, so put ebosJacIgnoreOverlap as both variables
//to be certain that correct matrix is used for preconditioning.
Operator opA(ebosJacIgnoreOverlap, ebosJacIgnoreOverlap, wellModel,
parallelInformation_ );
assert( opA.comm() );
solve( opA, x, *rhs_, *(opA.comm()) );
}
else
{
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, WellModel, false > Operator;
Operator opA(*matrix_, *matrix_, wellModel);
solve( opA, x, *rhs_ );
}
if (parameters_.scale_linear_system_) {
scaleSolution(x);
}
return converged_;
}
/// Solve the system of linear equations Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
/// \copydoc NewtonIterationBlackoilInterface::iterations
int iterations () const { return iterations_; }
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
const boost::any& parallelInformation() const { return parallelInformation_; }
protected:
/// \brief construct the CPR preconditioner and the solver.
/// \tparam P The type of the parallel information.
/// \param parallelInformation the information about the parallelization.
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
template<Dune::SolverCategory::Category category=Dune::SolverCategory::sequential,
class LinearOperator, class POrComm>
#else
template<int category=Dune::SolverCategory::sequential, class LinearOperator, class POrComm>
#endif
void constructPreconditionerAndSolve(LinearOperator& linearOperator,
Vector& x, Vector& istlb,
const POrComm& parallelInformation_arg,
Dune::InverseOperatorResult& result) const
{
// Construct scalar product.
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
auto sp = Dune::createScalarProduct<Vector,POrComm>(parallelInformation_arg, category);
#else
typedef Dune::ScalarProductChooser<Vector, POrComm, category> ScalarProductChooser;
typedef std::unique_ptr<typename ScalarProductChooser::ScalarProduct> SPPointer;
SPPointer sp(ScalarProductChooser::construct(parallelInformation_arg));
#endif
// Communicate if parallel.
parallelInformation_arg.copyOwnerToAll(istlb, istlb);
#if FLOW_SUPPORT_AMG // activate AMG if either flow_ebos is used or UMFPack is not available
if( parameters_.linear_solver_use_amg_ || parameters_.use_cpr_)
{
typedef ISTLUtility::CPRSelector< Matrix, Vector, Vector, POrComm> CPRSelectorType;
typedef typename CPRSelectorType::Operator MatrixOperator;
std::unique_ptr< MatrixOperator > opA;
if( ! std::is_same< LinearOperator, MatrixOperator > :: value )
{
// create new operator in case linear operator and matrix operator differ
opA.reset( CPRSelectorType::makeOperator( linearOperator.getmat(), parallelInformation_arg ) );
}
const double relax = parameters_.ilu_relaxation_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
if ( parameters_.use_cpr_ )
{
using MatrixType = typename MatrixOperator::matrix_type;
using CouplingMetric = Opm::Amg::Element<pressureEqnIndex, pressureVarIndex>;
using CritBase = Dune::Amg::SymmetricCriterion<MatrixType, CouplingMetric>;
using Criterion = Dune::Amg::CoarsenCriterion<CritBase>;
using AMG = typename ISTLUtility
::BlackoilAmgSelector< MatrixType, Vector, Vector,POrComm, Criterion, pressureEqnIndex, pressureVarIndex >::AMG;
std::unique_ptr< AMG > amg;
// Construct preconditioner.
Criterion crit(15, 2000);
constructAMGPrecond<Criterion>( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
// Solve.
solve(linearOperator, x, istlb, *sp, *amg, result);
}
else
{
typedef typename CPRSelectorType::AMG AMG;
std::unique_ptr< AMG > amg;
// Construct preconditioner.
constructAMGPrecond( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
// Solve.
solve(linearOperator, x, istlb, *sp, *amg, result);
}
}
else
#endif
{
// Construct preconditioner.
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
// Solve.
solve(linearOperator, x, istlb, *sp, *precond, result);
}
}
// 3x3 matrix block inversion was unstable at least 2.3 until and including
// 2.5.0. There may still be some issue with the 4x4 matrix block inversion
// we therefore still use the block inversion in OPM
typedef ParallelOverlappingILU0<Dune::BCRSMatrix<Dune::MatrixBlock<typename Matrix::field_type,
Matrix::block_type::rows,
Matrix::block_type::cols> >,
Vector, Vector> SeqPreconditioner;
template <class Operator>
std::unique_ptr<SeqPreconditioner> constructPrecond(Operator& opA, const Dune::Amg::SequentialInformation&) const
{
const double relax = parameters_.ilu_relaxation_;
const int ilu_fillin = parameters_.ilu_fillin_level_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
const bool ilu_redblack = parameters_.ilu_redblack_;
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
std::unique_ptr<SeqPreconditioner> precond(new SeqPreconditioner(opA.getmat(), ilu_fillin, relax, ilu_milu, ilu_redblack, ilu_reorder_spheres));
return precond;
}
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication<int, int> Comm;
#if DUNE_VERSION_NEWER_REV(DUNE_ISTL, 2 , 5, 1)
// 3x3 matrix block inversion was unstable from at least 2.3 until and
// including 2.5.0
typedef ParallelOverlappingILU0<Matrix,Vector,Vector,Comm> ParPreconditioner;
#else
typedef ParallelOverlappingILU0<Dune::BCRSMatrix<Dune::MatrixBlock<typename Matrix::field_type,
Matrix::block_type::rows,
Matrix::block_type::cols> >,
Vector, Vector, Comm> ParPreconditioner;
#endif
template <class Operator>
std::unique_ptr<ParPreconditioner>
constructPrecond(Operator& opA, const Comm& comm) const
{
typedef std::unique_ptr<ParPreconditioner> Pointer;
const double relax = parameters_.ilu_relaxation_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
const bool ilu_redblack = parameters_.ilu_redblack_;
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
return Pointer(new ParPreconditioner(opA.getmat(), comm, relax, ilu_milu, ilu_redblack, ilu_reorder_spheres));
}
#endif
template <class LinearOperator, class MatrixOperator, class POrComm, class AMG >
void
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax, const MILU_VARIANT milu) const
{
ISTLUtility::template createAMGPreconditionerPointer<pressureEqnIndex, pressureVarIndex>( *opA, relax, milu, comm, amg );
}
template <class C, class LinearOperator, class MatrixOperator, class POrComm, class AMG >
void
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax,
const MILU_VARIANT /* milu */ ) const
{
ISTLUtility::template createAMGPreconditionerPointer<C>( *opA, relax,
comm, amg, parameters_, weights_ );
}
/// \brief Solve the system using the given preconditioner and scalar product.
template <class Operator, class ScalarProd, class Precond>
void solve(Operator& opA, Vector& x, Vector& istlb, ScalarProd& sp, Precond& precond, Dune::InverseOperatorResult& result) const
{
// TODO: Revise when linear solvers interface opm-core is done
// Construct linear solver.
// GMRes solver
int verbosity = 0;
if (simulator_.gridView().comm().rank() == 0)
verbosity = parameters_.linear_solver_verbosity_;
if ( parameters_.newton_use_gmres_ ) {
Dune::RestartedGMResSolver<Vector> linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_restart_,
parameters_.linear_solver_maxiter_,
verbosity);
// Solve system.
linsolve.apply(x, istlb, result);
}
else { // BiCGstab solver
Dune::BiCGSTABSolver<Vector> linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_maxiter_,
verbosity);
// Solve system.
linsolve.apply(x, istlb, result);
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
void solve(Matrix& A, Vector& x, Vector& b ) const
{
// Parallel version is deactivated until we figure out how to do it properly.
#if HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
Comm istlComm(info.communicator());
// Construct operator, scalar product and vectors needed.
typedef Dune::OverlappingSchwarzOperator<Matrix, Vector, Vector,Comm> Operator;
Operator opA(A, istlComm);
solve( opA, x, b, istlComm );
}
else
#endif
{
// Construct operator, scalar product and vectors needed.
Dune::MatrixAdapter< Matrix, Vector, Vector> opA( A );
solve( opA, x, b );
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
template <class Operator, class Comm >
void solve(Operator& opA OPM_UNUSED_NOMPI,
Vector& x OPM_UNUSED_NOMPI,
Vector& b OPM_UNUSED_NOMPI,
Comm& comm OPM_UNUSED_NOMPI) const
{
Dune::InverseOperatorResult result;
// Parallel version is deactivated until we figure out how to do it properly.
#if HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
const size_t size = opA.getmat().N();
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
// As we use a dune-istl with block size np the number of components
// per parallel is only one.
info.copyValuesTo(comm.indexSet(), comm.remoteIndices(),
size, 1);
// Construct operator, scalar product and vectors needed.
constructPreconditionerAndSolve<Dune::SolverCategory::overlapping>(opA, x, b, comm, result);
}
else
#endif
{
OPM_THROW(std::logic_error,"this method if for parallel solve only");
}
checkConvergence( result );
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
template <class Operator>
void solve(Operator& opA, Vector& x, Vector& b ) const
{
Dune::InverseOperatorResult result;
// Construct operator, scalar product and vectors needed.
Dune::Amg::SequentialInformation info;
constructPreconditionerAndSolve(opA, x, b, info, result);
checkConvergence( result );
}
void checkConvergence( const Dune::InverseOperatorResult& result ) const
{
// store number of iterations
iterations_ = result.iterations;
converged_ = result.converged;
// Check for failure of linear solver.
if (!parameters_.ignoreConvergenceFailure_ && !result.converged) {
const std::string msg("Convergence failure for linear solver.");
OPM_THROW_NOLOG(NumericalIssue, msg);
}
}
protected:
bool isParallel() const {
#if HAVE_MPI
return parallelInformation_.type() == typeid(ParallelISTLInformation);
#else
return false;
#endif
}
/// Zero out off-diagonal blocks on rows corresponding to overlap cells
/// Diagonal blocks on ovelap rows are set to diag(1e100).
void makeOverlapRowsInvalid(Matrix& ebosJacIgnoreOverlap) const
{
//value to set on diagonal
Dune::FieldMatrix<Scalar, numEq, numEq> diag_block(0.0);
for (int eq = 0; eq < numEq; ++eq)
diag_block[eq][eq] = 1.0e100;
//loop over precalculated overlap rows and columns
for (auto row = overlapRowAndColumns_.begin(); row != overlapRowAndColumns_.end(); row++ )
{
int lcell = row->first;
//diagonal block set to large value diagonal
ebosJacIgnoreOverlap[lcell][lcell] = diag_block;
//loop over off diagonal blocks in overlap row
for (auto col = row->second.begin(); col != row->second.end(); ++col)
{
int ncell = *col;
//zero out block
ebosJacIgnoreOverlap[lcell][ncell] = 0.0;
}
}
}
// Weights to make approximate pressure equations.
// Calculated from the storage terms (only) of the
// conservation equations, ignoring all other terms.
Vector getStorageWeights() const
{
Vector weights(rhs_->size());
BlockVector rhs(0.0);
rhs[pressureVarIndex] = 1.0;
int index = 0;
ElementContext elemCtx(simulator_);
const auto& vanguard = simulator_.vanguard();
auto elemIt = vanguard.gridView().template begin</*codim=*/0>();
const auto& elemEndIt = vanguard.gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
Dune::FieldVector<Evaluation, numEq> storage;
unsigned threadId = ThreadManager::threadId();
simulator_.model().localLinearizer(threadId).localResidual().computeStorage(storage,elemCtx,/*spaceIdx=*/0, /*timeIdx=*/0);
Scalar extrusionFactor = elemCtx.intensiveQuantities(0, /*timeIdx=*/0).extrusionFactor();
Scalar scvVolume = elemCtx.stencil(/*timeIdx=*/0).subControlVolume(0).volume() * extrusionFactor;
Scalar storage_scale = scvVolume / elemCtx.simulator().timeStepSize();
MatrixBlockType block;
double pressure_scale = 50e5;
for (int ii = 0; ii < numEq; ++ii) {
for (int jj = 0; jj < numEq; ++jj) {
block[ii][jj] = storage[ii].derivative(jj)/storage_scale;
if (jj == pressureVarIndex) {
block[ii][jj] *= pressure_scale;
}
}
}
BlockVector bweights;
MatrixBlockType block_transpose = Opm::transposeDenseMatrix(block);
block_transpose.solve(bweights, rhs);
bweights /= 1000.0; // given normal densities this scales weights to about 1.
weights[index] = bweights;
++index;
}
return weights;
}
// Interaction between the CPR weights (the function argument 'weights')
// and the variable and equation weights from
// simulator_.model().primaryVarWeight() and
// simulator_.model().eqWeight() is nontrivial and does not work
// at the moment. Possibly refactoring of ewoms weight treatment
// is needed. In the meantime this function shows what needs to be
// done to integrate the weights properly.
void scaleEquationsAndVariables(Vector& weights)
{
// loop over primary variables
const auto endi = matrix_->end();
for (auto i = matrix_->begin(); i != endi; ++i) {
const auto endj = (*i).end();
BlockVector& brhs = (*rhs_)[i.index()];
for (auto j = (*i).begin(); j != endj; ++j) {
MatrixBlockType& block = *j;
for (std::size_t ii = 0; ii < block.rows; ii++ ) {
for (std::size_t jj = 0; jj < block.cols; jj++) {
double var_scale = simulator_.model().primaryVarWeight(i.index(),jj);
block[ii][jj] /= var_scale;
block[ii][jj] *= simulator_.model().eqWeight(i.index(), ii);
}
}
}
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
brhs[ii] *= simulator_.model().eqWeight(i.index(), ii);
}
if (weights.size() == matrix_->N()) {
BlockVector& bw = weights[i.index()];
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
bw[ii] /= simulator_.model().eqWeight(i.index(), ii);
}
double abs_max =
*std::max_element(bw.begin(), bw.end(), [](double a, double b){ return std::abs(a) < std::abs(b); } );
bw /= abs_max;
}
}
}
void scaleSolution(Vector& x)
{
for (std::size_t i = 0; i < x.size(); ++i) {
auto& bx = x[i];
for (std::size_t jj = 0; jj < bx.size(); jj++) {
double var_scale = simulator_.model().primaryVarWeight(i,jj);
bx[jj] /= var_scale;
}
}
}
Vector getQuasiImpesWeights()
{
Matrix& A = *matrix_;
Vector weights(rhs_->size());
BlockVector rhs(0.0);
rhs[pressureVarIndex] = 1;
const auto endi = A.end();
for (auto i = A.begin(); i!=endi; ++i) {
const auto endj = (*i).end();
MatrixBlockType diag_block(0.0);
for (auto j=(*i).begin(); j!=endj; ++j) {
if (i.index() == j.index()) {
diag_block = (*j);
break;
}
}
BlockVector bweights;
auto diag_block_transpose = Opm::transposeDenseMatrix(diag_block);
diag_block_transpose.solve(bweights, rhs);
double abs_max =
*std::max_element(bweights.begin(), bweights.end(), [](double a, double b){ return std::abs(a) < std::abs(b); } );
bweights /= std::abs(abs_max);
weights[i.index()] = bweights;
}
return weights;
}
Vector getSimpleWeights(const BlockVector& rhs)
{
Vector weights(rhs_->size(), 0);
for (auto& bw : weights) {
bw = rhs;
}
return weights;
}
void scaleMatrixAndRhs(const Vector& weights)
{
using Block = typename Matrix::block_type;
const auto endi = matrix_->end();
for (auto i = matrix_->begin(); i !=endi; ++i) {
const BlockVector& bweights = weights[i.index()];
BlockVector& brhs = (*rhs_)[i.index()];
const auto endj = (*i).end();
for (auto j = (*i).begin(); j != endj; ++j) {
// assume it is something on all rows
Block& block = (*j);
BlockVector neweq(0.0);
for (std::size_t ii = 0; ii < block.rows; ii++) {
for (std::size_t jj = 0; jj < block.cols; jj++) {
neweq[jj] += bweights[ii]*block[ii][jj];
}
}
block[pressureEqnIndex] = neweq;
}
Scalar newrhs(0.0);
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
newrhs += bweights[ii]*brhs[ii];
}
brhs[pressureEqnIndex] = newrhs;
}
}
static void multBlocksInMatrix(Matrix& ebosJac, const MatrixBlockType& trans, const bool left = true)
{
const int n = ebosJac.N();
for (int row_index = 0; row_index < n; ++row_index) {
auto& row = ebosJac[row_index];
auto* dataptr = row.getptr();
for (int elem = 0; elem < row.N(); ++elem) {
auto& block = dataptr[elem];
if (left) {
block = block.leftmultiply(trans);
} else {
block = block.rightmultiply(trans);
}
}
}
}
static void multBlocksVector(Vector& ebosResid_cp, const MatrixBlockType& leftTrans)
{
for (auto& bvec : ebosResid_cp) {
auto bvec_new = bvec;
leftTrans.mv(bvec, bvec_new);
bvec = bvec_new;
}
}
static void scaleCPRSystem(Matrix& M_cp, Vector& b_cp, const MatrixBlockType& leftTrans)
{
multBlocksInMatrix(M_cp, leftTrans, true);
multBlocksVector(b_cp, leftTrans);
}
const Simulator& simulator_;
mutable int iterations_;
mutable bool converged_;
boost::any parallelInformation_;
std::unique_ptr<Matrix> matrix_;
Vector *rhs_;
std::unique_ptr<Matrix> matrix_for_preconditioner_;
std::vector<std::pair<int,std::vector<int>>> overlapRowAndColumns_;
FlowLinearSolverParameters parameters_;
Vector weights_;
bool scale_variables_;
}; // end ISTLSolver
} // namespace Opm
#endif