mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-03 21:16:54 -06:00
b0a2fc8a67
the alternative causes some compilers to emit uninitialized use warnings
824 lines
33 KiB
C++
824 lines
33 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2016 - 2017 IRIS AS.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/StandardWellGeneric.hpp>
|
|
|
|
#include <opm/common/utility/numeric/RootFinders.hpp>
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/VFPInjTable.hpp>
|
|
|
|
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
|
|
#include <opm/simulators/utils/DeferredLogger.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/simulators/wells/VFPHelpers.hpp>
|
|
#include <opm/simulators/wells/VFPProperties.hpp>
|
|
#include <opm/simulators/wells/WellHelpers.hpp>
|
|
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
|
|
#include <fmt/format.h>
|
|
#include <stdexcept>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template<class Scalar>
|
|
StandardWellGeneric<Scalar>::
|
|
StandardWellGeneric(int Bhp,
|
|
const WellInterfaceGeneric& baseif)
|
|
: baseif_(baseif)
|
|
, perf_densities_(baseif_.numPerfs())
|
|
, perf_pressure_diffs_(baseif_.numPerfs())
|
|
, parallelB_(duneB_, baseif_.parallelWellInfo())
|
|
, Bhp_(Bhp)
|
|
{
|
|
duneB_.setBuildMode(OffDiagMatWell::row_wise);
|
|
duneC_.setBuildMode(OffDiagMatWell::row_wise);
|
|
invDuneD_.setBuildMode(DiagMatWell::row_wise);
|
|
}
|
|
|
|
template<class Scalar>
|
|
double
|
|
StandardWellGeneric<Scalar>::
|
|
relaxationFactorRate(const std::vector<double>& primary_variables,
|
|
const BVectorWell& dwells)
|
|
{
|
|
double relaxation_factor = 1.0;
|
|
static constexpr int WQTotal = 0;
|
|
|
|
// For injector, we only check the total rates to avoid sign change of rates
|
|
const double original_total_rate = primary_variables[WQTotal];
|
|
const double newton_update = dwells[0][WQTotal];
|
|
const double possible_update_total_rate = primary_variables[WQTotal] - newton_update;
|
|
|
|
// 0.8 here is a experimental value, which remains to be optimized
|
|
// if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will
|
|
// always be 1.0, more thoughts might be needed.
|
|
if (original_total_rate * possible_update_total_rate < 0.) { // sign changed
|
|
relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8;
|
|
}
|
|
|
|
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
|
|
|
|
return relaxation_factor;
|
|
}
|
|
|
|
template<class Scalar>
|
|
double
|
|
StandardWellGeneric<Scalar>::
|
|
relaxationFactorFraction(const double old_value,
|
|
const double dx)
|
|
{
|
|
assert(old_value >= 0. && old_value <= 1.0);
|
|
|
|
double relaxation_factor = 1.;
|
|
|
|
// updated values without relaxation factor
|
|
const double possible_updated_value = old_value - dx;
|
|
|
|
// 0.95 is an experimental value remains to be optimized
|
|
if (possible_updated_value < 0.0) {
|
|
relaxation_factor = std::abs(old_value / dx) * 0.95;
|
|
} else if (possible_updated_value > 1.0) {
|
|
relaxation_factor = std::abs((1. - old_value) / dx) * 0.95;
|
|
}
|
|
// if possible_updated_value is between 0. and 1.0, then relaxation_factor
|
|
// remains to be one
|
|
|
|
assert(relaxation_factor >= 0. && relaxation_factor <= 1.);
|
|
|
|
return relaxation_factor;
|
|
}
|
|
|
|
template<class Scalar>
|
|
double
|
|
StandardWellGeneric<Scalar>::
|
|
calculateThpFromBhp(const WellState &well_state,
|
|
const std::vector<double>& rates,
|
|
const double bhp,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
const double aqua = rates[Water];
|
|
const double liquid = rates[Oil];
|
|
const double vapour = rates[Gas];
|
|
|
|
// pick the density in the top layer
|
|
double thp = 0.0;
|
|
if (baseif_.isInjector()) {
|
|
const int table_id = baseif_.wellEcl().vfp_table_number();
|
|
const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
|
|
|
|
thp = baseif_.vfpProperties()->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
}
|
|
else if (baseif_.isProducer()) {
|
|
const int table_id = baseif_.wellEcl().vfp_table_number();
|
|
const double alq = baseif_.getALQ(well_state);
|
|
const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
|
|
|
|
thp = baseif_.vfpProperties()->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
}
|
|
|
|
return thp;
|
|
}
|
|
|
|
template<class Scalar>
|
|
void
|
|
StandardWellGeneric<Scalar>::
|
|
computeConnectionPressureDelta()
|
|
{
|
|
// Algorithm:
|
|
|
|
// We'll assume the perforations are given in order from top to
|
|
// bottom for each well. By top and bottom we do not necessarily
|
|
// mean in a geometric sense (depth), but in a topological sense:
|
|
// the 'top' perforation is nearest to the surface topologically.
|
|
// Our goal is to compute a pressure delta for each perforation.
|
|
|
|
// 1. Compute pressure differences between perforations.
|
|
// dp_perf will contain the pressure difference between a
|
|
// perforation and the one above it, except for the first
|
|
// perforation for each well, for which it will be the
|
|
// difference to the reference (bhp) depth.
|
|
|
|
const int nperf = baseif_.numPerfs();
|
|
perf_pressure_diffs_.resize(nperf, 0.0);
|
|
auto z_above = baseif_.parallelWellInfo().communicateAboveValues(baseif_.refDepth(), baseif_.perfDepth());
|
|
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
const double dz = baseif_.perfDepth()[perf] - z_above[perf];
|
|
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * baseif_.gravity();
|
|
}
|
|
|
|
// 2. Compute pressure differences to the reference point (bhp) by
|
|
// accumulating the already computed adjacent pressure
|
|
// differences, storing the result in dp_perf.
|
|
// This accumulation must be done per well.
|
|
const auto beg = perf_pressure_diffs_.begin();
|
|
const auto end = perf_pressure_diffs_.end();
|
|
baseif_.parallelWellInfo().partialSumPerfValues(beg, end);
|
|
}
|
|
|
|
template<class Scalar>
|
|
void
|
|
StandardWellGeneric<Scalar>::
|
|
gliftDebug(const std::string &msg,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
if (glift_debug) {
|
|
const std::string message = fmt::format(
|
|
" GLIFT (DEBUG) : SW : Well {} : {}", baseif_.name(), msg);
|
|
deferred_logger.info(message);
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
bool
|
|
StandardWellGeneric<Scalar>::
|
|
checkGliftNewtonIterationIdxOk(const int report_step_idx,
|
|
const int iteration_idx,
|
|
const Schedule& schedule,
|
|
DeferredLogger& deferred_logger ) const
|
|
{
|
|
const GasLiftOpt& glo = schedule.glo(report_step_idx);
|
|
if (glo.all_newton()) {
|
|
const int nupcol = schedule[report_step_idx].nupcol();
|
|
if (this->glift_debug) {
|
|
const std::string msg = fmt::format(
|
|
"LIFTOPT item4 == YES, it = {}, nupcol = {} --> GLIFT optimize = {}",
|
|
iteration_idx,
|
|
nupcol,
|
|
((iteration_idx <= nupcol) ? "TRUE" : "FALSE"));
|
|
gliftDebug(msg, deferred_logger);
|
|
}
|
|
return iteration_idx <= nupcol;
|
|
}
|
|
else {
|
|
if (this->glift_debug) {
|
|
const std::string msg = fmt::format(
|
|
"LIFTOPT item4 == NO, it = {} --> GLIFT optimize = {}",
|
|
iteration_idx, ((iteration_idx == 1) ? "TRUE" : "FALSE"));
|
|
gliftDebug(msg, deferred_logger);
|
|
}
|
|
return iteration_idx == 1;
|
|
}
|
|
}
|
|
|
|
/* At this point we know that the well does not have BHP control mode and
|
|
that it does have THP constraints, see computeWellPotentials().
|
|
* TODO: Currently we limit the application of gas lift optimization to wells
|
|
* operating under THP control mode, does it make sense to
|
|
* extend it to other modes?
|
|
*/
|
|
template<class Scalar>
|
|
bool
|
|
StandardWellGeneric<Scalar>::
|
|
doGasLiftOptimize(const WellState &well_state,
|
|
const int report_step_idx,
|
|
const int iteration_idx,
|
|
const Schedule& schedule,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
gliftDebug("checking if GLIFT should be done..", deferred_logger);
|
|
if (!well_state.gliftOptimizationEnabled()) {
|
|
gliftDebug("Optimization disabled in WellState", deferred_logger);
|
|
return false;
|
|
}
|
|
if (well_state.gliftCheckAlqOscillation(baseif_.name())) {
|
|
gliftDebug("further optimization skipped due to oscillation in ALQ",
|
|
deferred_logger);
|
|
return false;
|
|
}
|
|
if (glift_optimize_only_thp_wells) {
|
|
const int well_index = baseif_.indexOfWell();
|
|
auto control_mode = well_state.currentProductionControl(well_index);
|
|
if (control_mode != Well::ProducerCMode::THP ) {
|
|
gliftDebug("Not THP control", deferred_logger);
|
|
return false;
|
|
}
|
|
}
|
|
if (!checkGliftNewtonIterationIdxOk(report_step_idx,
|
|
iteration_idx,
|
|
schedule,
|
|
deferred_logger)) {
|
|
return false;
|
|
}
|
|
const GasLiftOpt& glo = schedule.glo(report_step_idx);
|
|
if (!glo.has_well(baseif_.name())) {
|
|
gliftDebug("Gas Lift not activated: WLIFTOPT is probably missing",
|
|
deferred_logger);
|
|
return false;
|
|
}
|
|
auto increment = glo.gaslift_increment();
|
|
// NOTE: According to the manual: LIFTOPT, item 1, :
|
|
// "Increment size for lift gas injection rate. Lift gas is
|
|
// allocated to individual wells in whole numbers of the increment
|
|
// size. If gas lift optimization is no longer required, it can be
|
|
// turned off by entering a zero or negative number."
|
|
if (increment <= 0) {
|
|
if (glift_debug) {
|
|
const std::string msg = fmt::format(
|
|
"Gas Lift switched off in LIFTOPT item 1 due to non-positive "
|
|
"value: {}", increment);
|
|
gliftDebug(msg, deferred_logger);
|
|
}
|
|
return false;
|
|
}
|
|
else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::optional<double>
|
|
StandardWellGeneric<Scalar>::
|
|
computeBhpAtThpLimitProdWithAlq(const std::function<std::vector<double>(const double)>& frates,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger,
|
|
double alq_value) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) is returned.
|
|
//
|
|
// In order to detect these situations, we will find piecewise
|
|
// linear approximations both to the inverse of the frates
|
|
// function and to the fbhp function.
|
|
//
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
// find the corresponding bhp values by solving the equation:
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
// the true inverse inflow function, at the same flo values as
|
|
// the VFP data.
|
|
//
|
|
// Then we extract a piecewise linear approximation from the
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
// values.
|
|
//
|
|
// When we have both piecewise linear curves defined on the
|
|
// same flo_sample points, it is easy to distinguish between
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
// in which to solve for the solution we want (with highest
|
|
// flow in case of 2 solutions).
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = baseif_.wellEcl().productionControls(summary_state);
|
|
const auto& table = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double thp_limit = baseif_.getTHPConstraint(summary_state);
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
|
|
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return baseif_.vfpProperties()->getProd()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo = [&table](const std::vector<double>& rates) {
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
};
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
// limit point if necessary. Then the sign must be flipped
|
|
// since the VFP code expects that production flo values are
|
|
// negative.
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
if (flo_samples[0] > 0.0) {
|
|
const double f0 = flo_samples[0];
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
}
|
|
const double flo_bhp_limit = -flo(frates(controls.bhp_limit));
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
}
|
|
for (double& x : flo_samples) {
|
|
x = -x;
|
|
}
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
std::vector<double> bhp_samples;
|
|
for (double flo_sample : flo_samples) {
|
|
if (flo_sample < -flo_bhp_limit) {
|
|
// We would have to go under the bhp limit to obtain a
|
|
// flow of this magnitude. We associate all such flows
|
|
// with simply the bhp limit. The first one
|
|
// encountered is considered valid, the rest not. They
|
|
// are therefore skipped.
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
break;
|
|
}
|
|
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
|
return flo(frates(bhp)) - flo_sample;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = 10.0 * unit::barsa;
|
|
const double high = 600.0 * unit::barsa;
|
|
const int max_iteration = 50;
|
|
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
bhp_samples.push_back(solved_bhp);
|
|
}
|
|
catch (...) {
|
|
// Use previous value (or max value if at start) if we failed.
|
|
bhp_samples.push_back(bhp_samples.empty() ? high : bhp_samples.back());
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
|
|
}
|
|
}
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
std::vector<double> fbhp_samples(num_samples);
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
}
|
|
// #define EXTRA_THP_DEBUGGING
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
std::string dbgmsg;
|
|
dbgmsg += "flo: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
}
|
|
dbgmsg += "\nbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
}
|
|
dbgmsg += "\nfbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
}
|
|
OpmLog::debug(dbgmsg);
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
// We only look at the valid
|
|
int sign_change_index = -1;
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
if (curr * next < 0.0) {
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
}
|
|
}
|
|
|
|
// Handle the no solution case.
|
|
if (sign_change_index == -1) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = bhp_samples[sign_change_index + 1];
|
|
const double high = bhp_samples[sign_change_index];
|
|
const int max_iteration = 50;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
if (low == high) {
|
|
// We are in the high flow regime where the bhp_samples
|
|
// are all equal to the bhp_limit.
|
|
assert(low == controls.bhp_limit);
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
|
return std::nullopt;
|
|
}
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::optional<double>
|
|
StandardWellGeneric<Scalar>::
|
|
computeBhpAtThpLimitInj(const std::function<std::vector<double>(const double)>& frates,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) is returned.
|
|
//
|
|
// In order to detect these situations, we will find piecewise
|
|
// linear approximations both to the inverse of the frates
|
|
// function and to the fbhp function.
|
|
//
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
// find the corresponding bhp values by solving the equation:
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
// the true inverse inflow function, at the same flo values as
|
|
// the VFP data.
|
|
//
|
|
// Then we extract a piecewise linear approximation from the
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
// values.
|
|
//
|
|
// When we have both piecewise linear curves defined on the
|
|
// same flo_sample points, it is easy to distinguish between
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
// in which to solve for the solution we want (with highest
|
|
// flow in case of 2 solutions).
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = baseif_.wellEcl().injectionControls(summary_state);
|
|
const auto& table = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number);
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double thp_limit = baseif_.getTHPConstraint(summary_state);
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
|
|
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return baseif_.vfpProperties()->getInj()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo = [&table](const std::vector<double>& rates) {
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
};
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
// limit point if necessary.
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
if (flo_samples[0] > 0.0) {
|
|
const double f0 = flo_samples[0];
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
}
|
|
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
}
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
std::vector<double> bhp_samples;
|
|
for (double flo_sample : flo_samples) {
|
|
if (flo_sample > flo_bhp_limit) {
|
|
// We would have to go over the bhp limit to obtain a
|
|
// flow of this magnitude. We associate all such flows
|
|
// with simply the bhp limit. The first one
|
|
// encountered is considered valid, the rest not. They
|
|
// are therefore skipped.
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
break;
|
|
}
|
|
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
|
return flo(frates(bhp)) - flo_sample;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = 10.0 * unit::barsa;
|
|
const double high = 800.0 * unit::barsa;
|
|
const int max_iteration = 50;
|
|
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
bhp_samples.push_back(solved_bhp);
|
|
}
|
|
catch (...) {
|
|
// Use previous value (or max value if at start) if we failed.
|
|
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
|
|
}
|
|
}
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
std::vector<double> fbhp_samples(num_samples);
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
}
|
|
// #define EXTRA_THP_DEBUGGING
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
std::string dbgmsg;
|
|
dbgmsg += "flo: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
}
|
|
dbgmsg += "\nbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
}
|
|
dbgmsg += "\nfbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
}
|
|
OpmLog::debug(dbgmsg);
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
// We only look at the valid
|
|
int sign_change_index = -1;
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
if (curr * next < 0.0) {
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
}
|
|
}
|
|
|
|
// Handle the no solution case.
|
|
if (sign_change_index == -1) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = bhp_samples[sign_change_index + 1];
|
|
const double high = bhp_samples[sign_change_index];
|
|
const int max_iteration = 50;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
if (low == high) {
|
|
// We are in the high flow regime where the bhp_samples
|
|
// are all equal to the bhp_limit.
|
|
assert(low == controls.bhp_limit);
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
|
return std::nullopt;
|
|
}
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
void
|
|
StandardWellGeneric<Scalar>::
|
|
checkConvergenceControlEq(const WellState& well_state,
|
|
ConvergenceReport& report,
|
|
DeferredLogger& deferred_logger,
|
|
const double max_residual_allowed) const
|
|
{
|
|
double control_tolerance = 0.;
|
|
using CR = ConvergenceReport;
|
|
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
|
|
|
|
const int well_index = baseif_.indexOfWell();
|
|
if (baseif_.wellIsStopped()) {
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-6; // use smaller tolerance for zero control?
|
|
}
|
|
else if (baseif_.isInjector() )
|
|
{
|
|
auto current = well_state.currentInjectionControl(well_index);
|
|
switch(current) {
|
|
case Well::InjectorCMode::THP:
|
|
ctrltype = CR::WellFailure::Type::ControlTHP;
|
|
control_tolerance = 1.e4; // 0.1 bar
|
|
break;
|
|
case Well::InjectorCMode::BHP:
|
|
ctrltype = CR::WellFailure::Type::ControlBHP;
|
|
control_tolerance = 1.e3; // 0.01 bar
|
|
break;
|
|
case Well::InjectorCMode::RATE:
|
|
case Well::InjectorCMode::RESV:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-4; //
|
|
break;
|
|
case Well::InjectorCMode::GRUP:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-6; //
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
|
|
}
|
|
}
|
|
else if (baseif_.isProducer() )
|
|
{
|
|
auto current = well_state.currentProductionControl(well_index);
|
|
switch(current) {
|
|
case Well::ProducerCMode::THP:
|
|
ctrltype = CR::WellFailure::Type::ControlTHP;
|
|
control_tolerance = 1.e4; // 0.1 bar
|
|
break;
|
|
case Well::ProducerCMode::BHP:
|
|
ctrltype = CR::WellFailure::Type::ControlBHP;
|
|
control_tolerance = 1.e3; // 0.01 bar
|
|
break;
|
|
case Well::ProducerCMode::ORAT:
|
|
case Well::ProducerCMode::WRAT:
|
|
case Well::ProducerCMode::GRAT:
|
|
case Well::ProducerCMode::LRAT:
|
|
case Well::ProducerCMode::RESV:
|
|
case Well::ProducerCMode::CRAT:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-4; // smaller tolerance for rate control
|
|
break;
|
|
case Well::ProducerCMode::GRUP:
|
|
ctrltype = CR::WellFailure::Type::ControlRate;
|
|
control_tolerance = 1.e-6; // smaller tolerance for rate control
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
const double well_control_residual = std::abs(this->resWell_[0][Bhp_]);
|
|
const int dummy_component = -1;
|
|
if (std::isnan(well_control_residual)) {
|
|
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, baseif_.name()});
|
|
} else if (well_control_residual > max_residual_allowed * 10.) {
|
|
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, baseif_.name()});
|
|
} else if ( well_control_residual > control_tolerance) {
|
|
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, baseif_.name()});
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
void
|
|
StandardWellGeneric<Scalar>::
|
|
checkConvergencePolyMW(const std::vector<double>& res,
|
|
ConvergenceReport& report,
|
|
const double maxResidualAllowed) const
|
|
{
|
|
if (baseif_.isInjector()) {
|
|
// checking the convergence of the perforation rates
|
|
const double wat_vel_tol = 1.e-8;
|
|
const int dummy_component = -1;
|
|
using CR = ConvergenceReport;
|
|
const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance;
|
|
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
|
|
const double wat_vel_residual = res[Bhp_ + 1 + perf];
|
|
if (std::isnan(wat_vel_residual)) {
|
|
report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()});
|
|
} else if (wat_vel_residual > maxResidualAllowed * 10.) {
|
|
report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()});
|
|
} else if (wat_vel_residual > wat_vel_tol) {
|
|
report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()});
|
|
}
|
|
}
|
|
|
|
// checking the convergence of the skin pressure
|
|
const double pskin_tol = 1000.; // 1000 pascal
|
|
const auto pskin_failure_type = CR::WellFailure::Type::Pressure;
|
|
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
|
|
const double pskin_residual = res[Bhp_ + 1 + perf + baseif_.numPerfs()];
|
|
if (std::isnan(pskin_residual)) {
|
|
report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()});
|
|
} else if (pskin_residual > maxResidualAllowed * 10.) {
|
|
report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()});
|
|
} else if (pskin_residual > pskin_tol) {
|
|
report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#if HAVE_CUDA || HAVE_OPENCL
|
|
template<class Scalar>
|
|
void
|
|
StandardWellGeneric<Scalar>::
|
|
getNumBlocks(unsigned int& numBlocks) const
|
|
{
|
|
numBlocks = duneB_.nonzeroes();
|
|
}
|
|
#endif
|
|
|
|
template class StandardWellGeneric<double>;
|
|
|
|
}
|