opm-simulators/ebos/eclequilinitializer.hh
2017-04-28 15:35:58 +02:00

289 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Ewoms::EclEquilInitializer
*/
#ifndef EWOMS_ECL_EQUIL_INITIALIZER_HH
#define EWOMS_ECL_EQUIL_INITIALIZER_HH
#include <ewoms/common/propertysystem.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
// the ordering of these includes matters. do not touch it if you're not prepared to deal
// with some trouble!
#include <dune/grid/cpgrid/GridHelpers.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/simulator/initStateEquil.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <vector>
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(FluidSystem);
NEW_PROP_TAG(GridView);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(MaterialLaw);
NEW_PROP_TAG(EnableSwatinit);
}
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Computes the initial condition based on the EQUIL keyword from ECL.
*
* So far, it uses the "initStateEquil()" function from opm-core. Since this method is
* very much glued into the opm-core data structures, it should be reimplemented in the
* medium to long term for some significant memory savings and less significant
* performance improvements.
*/
template <class TypeTag>
class EclEquilInitializer
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> ScalarFluidState;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { numComponents = FluidSystem::numComponents };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { dimWorld = GridView::dimensionworld };
public:
template <class EclMaterialLawManager>
EclEquilInitializer(const Simulator& simulator,
EclMaterialLawManager& materialLawManager,
bool enableSwatinit)
: simulator_(simulator)
{
const auto& gridManager = simulator.gridManager();
const auto& deck = gridManager.deck();
const auto& eclState = gridManager.eclState();
const auto& equilGrid = gridManager.equilGrid();
unsigned numElems = gridManager.grid().size(0);
unsigned numEquilElems = gridManager.equilGrid().size(0);
unsigned numCartesianElems = gridManager.cartesianSize();
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::ThreePhaseMaterialTraits<double,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> EquilTraits;
// create a separate instance of the material law manager just because opm-core
// only supports double as the type for scalars (but ebos may use float or quad)
std::vector<int> compressedToCartesianEquilElemIdx(numEquilElems);
std::vector<int> equilCartesianToCompressed( gridManager.equilCartesianSize(), -1 );
for (unsigned equilElemIdx = 0; equilElemIdx < numEquilElems; ++equilElemIdx)
{
unsigned int equilCartesianIdx = gridManager.equilCartesianIndex(equilElemIdx);
compressedToCartesianEquilElemIdx[equilElemIdx] = equilCartesianIdx;
equilCartesianToCompressed[ equilCartesianIdx ] = equilElemIdx;
}
auto equilMaterialLawManager =
std::make_shared<Opm::EclMaterialLawManager<EquilTraits> >();
equilMaterialLawManager->initFromDeck(deck, eclState, compressedToCartesianEquilElemIdx);
// create the data structures which are used by initStateEquil()
Opm::ParameterGroup tmpParam;
Opm::BlackoilPropertiesFromDeck opmBlackoilProps(
gridManager.deck(),
gridManager.eclState(),
equilMaterialLawManager,
Opm::UgGridHelpers::numCells(equilGrid),
Opm::UgGridHelpers::globalCell(equilGrid),
Opm::UgGridHelpers::cartDims(equilGrid),
tmpParam);
// initialize the boiler plate of opm-core the state structure.
const auto opmPhaseUsage = opmBlackoilProps.phaseUsage();
Opm::BlackoilState opmBlackoilState(numEquilElems,
/*numFaces=*/0, // we don't care here
opmPhaseUsage.num_phases);
// do the actual computation.
Opm::initStateEquil(equilGrid,
opmBlackoilProps,
gridManager.deck(),
gridManager.eclState(),
simulator.problem().gravity()[dimWorld - 1],
opmBlackoilState,
enableSwatinit);
std::vector<int> localToEquilIndex( numElems, -1 );
for( unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx )
{
const int cartesianIndex = gridManager.cartesianIndex( elemIdx );
assert( equilCartesianToCompressed[ cartesianIndex ] >= 0 );
localToEquilIndex[ elemIdx ] = equilCartesianToCompressed[ cartesianIndex ];
}
// copy the result into the array of initial fluid states
initialFluidStates_.resize(numCartesianElems);
for (unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
auto& fluidState = initialFluidStates_[cartesianElemIdx];
const unsigned int equilElemIdx = localToEquilIndex[ elemIdx ];
// get the PVT region index of the current element
unsigned regionIdx = simulator_.problem().pvtRegionIndex(elemIdx);
// set the phase saturations
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar S;
if (!FluidSystem::phaseIsActive(phaseIdx))
S = 0.0;
else {
unsigned opmPhasePos = 10000;
switch (phaseIdx) {
case oilPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Liquid];
break;
case gasPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Vapour];
break;
case waterPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Aqua];
break;
}
S = opmBlackoilState.saturation()[equilElemIdx*opmPhaseUsage.num_phases
+ opmPhasePos];
}
fluidState.setSaturation(phaseIdx, S);
}
// set the temperature
const auto& temperatureVector = opmBlackoilState.temperature();
Scalar T = FluidSystem::surfaceTemperature;
if (!temperatureVector.empty())
T = temperatureVector[equilElemIdx];
fluidState.setTemperature(T);
// set the phase pressures. the Opm::BlackoilState only provides the oil
// phase pressure, so we need to calculate the other phases' pressures
// ourselfs.
Dune::FieldVector< Scalar, numPhases > pC( 0 );
const auto& matParams = simulator.problem().materialLawParams(elemIdx);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
Scalar po = opmBlackoilState.pressure()[equilElemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
// reset the phase compositions
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
// the composition of the water phase is simple: it only consists of the
// water component.
fluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
if (FluidSystem::enableDissolvedGas()) {
// for gas and oil we have to translate surface volumes to mole fractions
// before we can set the composition in the fluid state
Scalar Rs = opmBlackoilState.gasoilratio()[equilElemIdx];
Scalar RsSat = FluidSystem::saturatedDissolutionFactor(fluidState, oilPhaseIdx, regionIdx);
if (Rs > RsSat)
Rs = RsSat;
// convert the Rs factor to mole fraction dissolved gas in oil
Scalar XoG = FluidSystem::convertRsToXoG(Rs, regionIdx);
Scalar xoG = FluidSystem::convertXoGToxoG(XoG, regionIdx);
fluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, 1 - xoG);
fluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
}
// retrieve the surface volume of vaporized gas
if (FluidSystem::enableVaporizedOil()) {
Scalar Rv = opmBlackoilState.rv()[equilElemIdx];
Scalar RvSat = FluidSystem::saturatedDissolutionFactor(fluidState, gasPhaseIdx, regionIdx);
if (Rv > RvSat)
Rv = RvSat;
// convert the Rs factor to mole fraction dissolved gas in oil
Scalar XgO = FluidSystem::convertRvToXgO(Rv, regionIdx);
Scalar xgO = FluidSystem::convertXgOToxgO(XgO, regionIdx);
fluidState.setMoleFraction(gasPhaseIdx, oilCompIdx, xgO);
fluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1 - xgO);
}
// deal with the changed pressure scaling due to SWATINIT if SWATINIT is
// requested to be applied. this is quite hacky but hey it works!
if (enableSwatinit) {
const auto& equilScalingPoints =
equilMaterialLawManager->oilWaterScaledEpsPointsDrainage(equilElemIdx);
auto& scalingPoints =
materialLawManager.oilWaterScaledEpsPointsDrainage(elemIdx);
scalingPoints.setMaxPcnw(equilScalingPoints.maxPcnw());
}
}
}
/*!
* \brief Return the initial thermodynamic state which should be used as the initial
* condition.
*
* This is supposed to correspond to hydrostatic conditions.
*/
const ScalarFluidState& initialFluidState(unsigned elemIdx) const
{
const auto& gridManager = simulator_.gridManager();
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
return initialFluidStates_[cartesianElemIdx];
}
protected:
const Simulator& simulator_;
std::vector<ScalarFluidState> initialFluidStates_;
};
} // namespace Ewoms
#endif