mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-26 19:20:17 -06:00
725 lines
24 KiB
C++
725 lines
24 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::LensProblem
|
|
*/
|
|
#ifndef EWOMS_LENS_PROBLEM_HH
|
|
#define EWOMS_LENS_PROBLEM_HH
|
|
|
|
#include <opm/models/io/structuredgridvanguard.hh>
|
|
#include <opm/models/immiscible/immiscibleproperties.hh>
|
|
#include <opm/models/discretization/common/fvbaseadlocallinearizer.hh>
|
|
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
|
|
#include <opm/models/common/transfluxmodule.hh>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Dnapl.hpp>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <iostream>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class LensProblem;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
// Create new type tags
|
|
namespace TTag {
|
|
struct LensBaseProblem { using InheritsFrom = std::tuple<StructuredGridVanguard>; };
|
|
} // end namespace TTag
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::LensBaseProblem> { using type = Opm::LensProblem<TypeTag>; };
|
|
|
|
// Use Dune-grid's YaspGrid
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::LensBaseProblem> { using type = Dune::YaspGrid<2>; };
|
|
|
|
// Set the wetting phase
|
|
template<class TypeTag>
|
|
struct WettingPhase<TypeTag, TTag::LensBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
using type = Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> >;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
template<class TypeTag>
|
|
struct NonwettingPhase<TypeTag, TTag::LensBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
using type = Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> >;
|
|
};
|
|
|
|
// Set the material Law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::LensBaseProblem>
|
|
{
|
|
private:
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
using EffectiveLaw = Opm::RegularizedVanGenuchten<Traits>;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
using type = Opm::EffToAbsLaw<EffectiveLaw>;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm::Parameters {
|
|
|
|
// declare the properties specific for the lens problem
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct LensLowerLeftX { using type = Properties::UndefinedProperty; };
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct LensLowerLeftY { using type = Properties::UndefinedProperty; };
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct LensLowerLeftZ { using type = Properties::UndefinedProperty; };
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct LensUpperRightX { using type = Properties::UndefinedProperty; };
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct LensUpperRightY { using type = Properties::UndefinedProperty; };
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct LensUpperRightZ { using type = Properties::UndefinedProperty; };
|
|
|
|
template<class TypeTag>
|
|
struct CellsX<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{ static constexpr unsigned value = 48; };
|
|
|
|
template<class TypeTag>
|
|
struct CellsY<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{ static constexpr unsigned value = 32; };
|
|
|
|
template<class TypeTag>
|
|
struct CellsZ<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{ static constexpr unsigned value = 16; };
|
|
|
|
template<class TypeTag>
|
|
struct DomainSizeX<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 6.0;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct DomainSizeY<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 4.0;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct DomainSizeZ<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 1.0;
|
|
};
|
|
|
|
// Enable gravity
|
|
template<class TypeTag>
|
|
struct EnableGravity<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{ static constexpr bool value = true; };
|
|
|
|
// enable the cache for intensive quantities by default for this problem
|
|
template<class TypeTag>
|
|
struct EnableIntensiveQuantityCache<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{ static constexpr bool value = true; };
|
|
|
|
// enable the storage cache by default for this problem
|
|
template<class TypeTag>
|
|
struct EnableStorageCache<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{ static constexpr bool value = true; };
|
|
|
|
// The default for the end time of the simulation
|
|
template<class TypeTag>
|
|
struct EndTime<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 30e3;
|
|
};
|
|
|
|
// The default for the initial time step size of the simulation
|
|
template<class TypeTag>
|
|
struct InitialTimeStepSize<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 250;
|
|
};
|
|
|
|
// define the properties specific for the lens problem
|
|
template<class TypeTag>
|
|
struct LensLowerLeftX<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 1.0;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct LensLowerLeftY<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 2.0;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct LensLowerLeftZ<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 0.0;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct LensUpperRightX<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 4.0;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct LensUpperRightY<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 3.0;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct LensUpperRightZ<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 1.0;
|
|
};
|
|
|
|
// Write the solutions of individual newton iterations?
|
|
template<class TypeTag>
|
|
struct NewtonWriteConvergence<TypeTag, Properties::TTag::LensBaseProblem>
|
|
{ static constexpr bool value = false; };
|
|
|
|
} // namespace Opm::Parameters
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Soil contamination problem where DNAPL infiltrates a fully
|
|
* water saturated medium.
|
|
*
|
|
* The domain is sized 6m times 4m and features a rectangular lens
|
|
* with low permeablility which spans from (1 m , 2 m) to (4 m, 3 m)
|
|
* and is surrounded by a medium with higher permability. Note that
|
|
* this problem is discretized using only two dimensions, so from the
|
|
* point of view of the model, the depth of the domain is implicitly
|
|
* assumed to be 1 m everywhere.
|
|
*
|
|
* On the top and the bottom of the domain no-flow boundary conditions
|
|
* are used, while free-flow conditions apply on the left and right
|
|
* boundaries; DNAPL is injected at the top boundary from 3m to 4m at
|
|
* a rate of 0.04 kg/(s m^2).
|
|
*
|
|
* At the boundary on the left, a free-flow condition using the
|
|
* hydrostatic pressure scaled by a factor of 1.125 is imposed, while
|
|
* on the right, it is just the hydrostatic pressure. The DNAPL
|
|
* saturation on both sides is zero.
|
|
*/
|
|
template <class TypeTag>
|
|
class LensProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using WettingPhase = GetPropType<TypeTag, Properties::WettingPhase>;
|
|
using NonwettingPhase = GetPropType<TypeTag, Properties::NonwettingPhase>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
|
|
enum {
|
|
// number of phases
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// phase indices
|
|
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
|
|
|
|
// equation indices
|
|
contiNEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
using CoordScalar = typename GridView::ctype;
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
LensProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
FluidSystem::init();
|
|
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
lensLowerLeft_[0] = Parameters::get<TypeTag, Parameters::LensLowerLeftX>();
|
|
lensLowerLeft_[1] = Parameters::get<TypeTag, Parameters::LensLowerLeftY>();
|
|
lensUpperRight_[0] = Parameters::get<TypeTag, Parameters::LensUpperRightX>();
|
|
lensUpperRight_[1] = Parameters::get<TypeTag, Parameters::LensUpperRightY>();
|
|
|
|
if (dimWorld == 3) {
|
|
lensLowerLeft_[2] = Parameters::get<TypeTag, Parameters::LensLowerLeftZ>();
|
|
lensUpperRight_[2] = Parameters::get<TypeTag, Parameters::LensUpperRightZ>();
|
|
}
|
|
|
|
// residual saturations
|
|
lensMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.18);
|
|
lensMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
outerMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.05);
|
|
outerMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
|
|
// parameters for the Van Genuchten law: alpha and n
|
|
lensMaterialParams_.setVgAlpha(0.00045);
|
|
lensMaterialParams_.setVgN(7.3);
|
|
outerMaterialParams_.setVgAlpha(0.0037);
|
|
outerMaterialParams_.setVgN(4.7);
|
|
|
|
lensMaterialParams_.finalize();
|
|
outerMaterialParams_.finalize();
|
|
|
|
lensK_ = this->toDimMatrix_(9.05e-12);
|
|
outerK_ = this->toDimMatrix_(4.6e-10);
|
|
|
|
if (dimWorld == 3) {
|
|
this->gravity_ = 0;
|
|
this->gravity_[1] = -9.81;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::registerParam<TypeTag, Parameters::LensLowerLeftX>
|
|
("The x-coordinate of the lens' lower-left corner [m].");
|
|
Parameters::registerParam<TypeTag, Parameters::LensLowerLeftY>
|
|
("The y-coordinate of the lens' lower-left corner [m].");
|
|
Parameters::registerParam<TypeTag, Parameters::LensUpperRightX>
|
|
("The x-coordinate of the lens' upper-right corner [m].");
|
|
Parameters::registerParam<TypeTag, Parameters::LensUpperRightY>
|
|
("The y-coordinate of the lens' upper-right corner [m].");
|
|
|
|
if (dimWorld == 3) {
|
|
Parameters::registerParam<TypeTag, Parameters::LensLowerLeftZ>
|
|
("The z-coordinate of the lens' lower-left corner [m].");
|
|
Parameters::registerParam<TypeTag, Parameters::LensUpperRightZ>
|
|
("The z-coordinate of the lens' upper-right corner [m].");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::briefDescription
|
|
*/
|
|
static std::string briefDescription()
|
|
{
|
|
std::string thermal = "isothermal";
|
|
bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
|
|
if (enableEnergy)
|
|
thermal = "non-isothermal";
|
|
|
|
std::string deriv = "finite difference";
|
|
using LLS = GetPropType<TypeTag, Properties::LocalLinearizerSplice>;
|
|
bool useAutoDiff = std::is_same<LLS, Properties::TTag::AutoDiffLocalLinearizer>::value;
|
|
if (useAutoDiff)
|
|
deriv = "automatic differentiation";
|
|
|
|
std::string disc = "vertex centered finite volume";
|
|
using D = GetPropType<TypeTag, Properties::Discretization>;
|
|
bool useEcfv = std::is_same<D, Opm::EcfvDiscretization<TypeTag>>::value;
|
|
if (useEcfv)
|
|
disc = "element centered finite volume";
|
|
|
|
return std::string("")+
|
|
"Ground remediation problem where a dense oil infiltrates "+
|
|
"an aquifer with an embedded low-permability lens. " +
|
|
"This is the binary for the "+thermal+" variant using "+deriv+
|
|
"and the "+disc+" discretization";
|
|
}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (isInLens_(globalPos))
|
|
return lensK_;
|
|
return outerK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return 0.4; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (isInLens_(globalPos))
|
|
return lensMaterialParams_;
|
|
return outerMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return temperature_; }
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
using LLS = GetPropType<TypeTag, Properties::LocalLinearizerSplice>;
|
|
|
|
bool useAutoDiff = std::is_same<LLS, Properties::TTag::AutoDiffLocalLinearizer>::value;
|
|
|
|
using FM = GetPropType<TypeTag, Properties::FluxModule>;
|
|
bool useTrans = std::is_same<FM, Opm::TransFluxModule<TypeTag>>::value;
|
|
|
|
std::ostringstream oss;
|
|
oss << "lens_" << Model::name()
|
|
<< "_" << Model::discretizationName()
|
|
<< "_" << (useAutoDiff?"ad":"fd");
|
|
if (useTrans)
|
|
oss << "_trans";
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::beginTimeStep
|
|
*/
|
|
void beginTimeStep()
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::beginIteration
|
|
*/
|
|
void beginIteration()
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
|
// free flow boundary. we assume incompressible fluids
|
|
Scalar densityW = WettingPhase::density(temperature_, /*pressure=*/Scalar(1e5));
|
|
Scalar densityN = NonwettingPhase::density(temperature_, /*pressure=*/Scalar(1e5));
|
|
|
|
Scalar T = temperature(context, spaceIdx, timeIdx);
|
|
Scalar pw, Sw;
|
|
|
|
// set wetting phase pressure and saturation
|
|
if (onLeftBoundary_(pos)) {
|
|
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
|
|
Scalar depth = this->boundingBoxMax()[1] - pos[1];
|
|
Scalar alpha = (1 + 1.5 / height);
|
|
|
|
// hydrostatic pressure scaled by alpha
|
|
pw = 1e5 - alpha * densityW * this->gravity()[1] * depth;
|
|
Sw = 1.0;
|
|
}
|
|
else {
|
|
Scalar depth = this->boundingBoxMax()[1] - pos[1];
|
|
|
|
// hydrostatic pressure
|
|
pw = 1e5 - densityW * this->gravity()[1] * depth;
|
|
Sw = 1.0;
|
|
}
|
|
|
|
// specify a full fluid state using pw and Sw
|
|
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem,
|
|
/*storeEnthalpy=*/false> fs;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
|
|
fs.setTemperature(T);
|
|
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
fs.setPressure(wettingPhaseIdx, pw);
|
|
fs.setPressure(nonWettingPhaseIdx, pw + pC[nonWettingPhaseIdx] - pC[wettingPhaseIdx]);
|
|
|
|
fs.setDensity(wettingPhaseIdx, densityW);
|
|
fs.setDensity(nonWettingPhaseIdx, densityN);
|
|
|
|
fs.setViscosity(wettingPhaseIdx, WettingPhase::viscosity(temperature_, fs.pressure(wettingPhaseIdx)));
|
|
fs.setViscosity(nonWettingPhaseIdx, NonwettingPhase::viscosity(temperature_, fs.pressure(nonWettingPhaseIdx)));
|
|
|
|
// impose an freeflow boundary condition
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onInlet_(pos)) {
|
|
RateVector massRate(0.0);
|
|
massRate = 0.0;
|
|
massRate[contiNEqIdx] = -0.04; // kg / (m^2 * s)
|
|
|
|
// impose a forced flow boundary
|
|
values.setMassRate(massRate);
|
|
}
|
|
else {
|
|
// no flow boundary
|
|
values.setNoFlow();
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
Scalar depth = this->boundingBoxMax()[1] - pos[1];
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
|
|
|
|
Scalar Sw = 1.0;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
|
|
|
|
fs.setTemperature(temperature_);
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updatePhase(fs, wettingPhaseIdx);
|
|
Scalar densityW = FluidSystem::density(fs, paramCache, wettingPhaseIdx);
|
|
|
|
// hydrostatic pressure (assuming incompressibility)
|
|
Scalar pw = 1e5 - densityW * this->gravity()[1] * depth;
|
|
|
|
// calculate the capillary pressure
|
|
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
|
|
// make a full fluid state
|
|
fs.setPressure(wettingPhaseIdx, pw);
|
|
fs.setPressure(nonWettingPhaseIdx, pw + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]));
|
|
|
|
// assign the primary variables
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool isInLens_(const GlobalPosition& pos) const
|
|
{
|
|
for (unsigned i = 0; i < dim; ++i) {
|
|
if (pos[i] < lensLowerLeft_[i] - eps_ || pos[i] > lensUpperRight_[i]
|
|
+ eps_)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition& pos) const
|
|
{
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
|
|
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
|
|
}
|
|
|
|
GlobalPosition lensLowerLeft_;
|
|
GlobalPosition lensUpperRight_;
|
|
|
|
DimMatrix lensK_;
|
|
DimMatrix outerK_;
|
|
MaterialLawParams lensMaterialParams_;
|
|
MaterialLawParams outerMaterialParams_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|