opm-simulators/opm/models/blackoil/blackoilconvectivemixingmodule.hh
2024-08-09 10:40:58 +02:00

375 lines
17 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Classes required for dynamic convective mixing.
*/
#ifndef EWOMS_CONVECTIVEMIXING_MODULE_HH
#define EWOMS_CONVECTIVEMIXING_MODULE_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/input/eclipse/Schedule/OilVaporizationProperties.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <stdexcept>
#include <iostream>
namespace Opm {
/*!
* \copydoc Opm::BlackOilConvectiveMixingModule
* \brief Provides the convective term in the transport flux for the brine
* when convective mixing (enhanced dissolution of CO2 in brine) occurs.
* Controlled by the regimes for a controlvolume:
* i) initial phase (CO2 dissolves in brine due to diffusion)
* ii) linear phase (Convective fingers of CO2-rich brine propagate downwards)
* iii) steady-state-phase (fingers have passed through the bottom of a control
* -volume but the larger scale convective process is still active)
* iv) decline phase (Convection ceases at the large-scale when the CO2
* has been completely dissolved)
*/
template <class TypeTag, bool enableConvectiveMixing>
class BlackOilConvectiveMixingModule;
/*!
* \copydoc Opm::BlackOilConvectiveMixingModule
*/
template <class TypeTag>
class BlackOilConvectiveMixingModule<TypeTag, /*enableConvectiveMixing=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { dimWorld = GridView::dimensionworld };
public:
struct ConvectiveMixingModuleParam
{};
#if HAVE_ECL_INPUT
static void beginEpisode(const EclipseState& eclState, const Schedule& schedule, const int episodeIdx, ConvectiveMixingModuleParam& info)
{}
#endif
template <class Context>
static bool active(const Context&) {
return false;
}
static void modifyAvgDensity(Evaluation&,
const IntensiveQuantities&,
const IntensiveQuantities&,
const unsigned int,
const ConvectiveMixingModuleParam&) {
}
template <class Context>
static void addConvectiveMixingFlux(RateVector&,
const Context&,
unsigned,
unsigned)
{}
/*!
* \brief Adds the convective mixing mass flux flux to the flux vector over a flux
* integration point.
*/
static void addConvectiveMixingFlux(RateVector&,
const IntensiveQuantities&,
const IntensiveQuantities&,
const unsigned,
const unsigned,
const Scalar,
const Scalar,
const Scalar,
const ConvectiveMixingModuleParam&)
{}
};
template <class TypeTag>
class BlackOilConvectiveMixingModule<TypeTag, /*enableConvectiveMixing=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Toolbox = MathToolbox<Evaluation>;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { dimWorld = GridView::dimensionworld };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
static constexpr bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
static constexpr unsigned contiEnergyEqIdx = Indices::contiEnergyEqIdx;
public:
struct ConvectiveMixingModuleParam
{
bool active_{false};
std::vector<Scalar> Xhi_;
std::vector<Scalar> Psi_;
};
#if HAVE_ECL_INPUT
static void beginEpisode(const EclipseState& eclState, const Schedule& schedule, const int episodeIdx, ConvectiveMixingModuleParam& info)
{
// check that Xhi and Psi didn't change
std::size_t numRegions = eclState.runspec().tabdims().getNumPVTTables();
const auto& control = schedule[episodeIdx].oilvap();
info.active_ = control.drsdtConvective();
if (!info.active_) {
return;
}
if (info.Xhi_.empty()) {
info.Xhi_.resize(numRegions);
info.Psi_.resize(numRegions);
}
for (size_t i = 0; i < numRegions; ++i ) {
info.Xhi_[i] = control.getMaxDRSDT(i);
info.Psi_[i] = control.getPsi(i);
}
}
#endif
static void modifyAvgDensity(Evaluation& rhoAvg,
const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx,
const unsigned phaseIdx,
const ConvectiveMixingModuleParam& info) {
if (!info.active_) {
return;
}
if (phaseIdx == FluidSystem::gasPhaseIdx) {
return;
}
const auto& liquidPhaseIdx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPhaseIdx :
FluidSystem::oilPhaseIdx;
// Compute avg density based on pure water
const auto& t_in = intQuantsIn.fluidState().temperature(liquidPhaseIdx);
const auto& p_in = intQuantsIn.fluidState().pressure(liquidPhaseIdx);
const auto& salt_in = intQuantsIn.fluidState().saltConcentration();
const auto& bLiquidIn = (FluidSystem::phaseIsActive(waterPhaseIdx)) ?
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, Evaluation(0.0), salt_in) :
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, Evaluation(0.0));
const auto& refDensityLiquidIn = (FluidSystem::phaseIsActive(waterPhaseIdx)) ?
FluidSystem::waterPvt().waterReferenceDensity(intQuantsIn.pvtRegionIndex()) :
FluidSystem::oilPvt().oilReferenceDensity(intQuantsIn.pvtRegionIndex());
const auto& rho_in = bLiquidIn * refDensityLiquidIn;
const auto t_ex = Toolbox::value(intQuantsEx.fluidState().temperature(liquidPhaseIdx));
const auto p_ex = Toolbox::value(intQuantsEx.fluidState().pressure(liquidPhaseIdx));
const auto salt_ex = Toolbox::value(intQuantsEx.fluidState().saltConcentration());
const auto bLiquidEx = (FluidSystem::phaseIsActive(waterPhaseIdx)) ?
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsEx.pvtRegionIndex(), t_ex, p_ex, 0.0, salt_ex) :
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsEx.pvtRegionIndex(), t_ex, p_ex, 0.0);
const auto& refDensityLiquidEx = (FluidSystem::phaseIsActive(waterPhaseIdx)) ?
FluidSystem::waterPvt().waterReferenceDensity(intQuantsEx.pvtRegionIndex()) :
FluidSystem::oilPvt().oilReferenceDensity(intQuantsEx.pvtRegionIndex());
const auto rho_ex = bLiquidEx * refDensityLiquidEx;
rhoAvg = (rho_in + rho_ex)/2;
}
template <class Context>
static void addConvectiveMixingFlux(RateVector& flux,
const Context& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) {
// need for darcy flux calculation
const auto& problem = elemCtx.problem();
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
unsigned interiorDofIdx = scvf.interiorIndex();
unsigned exteriorDofIdx = scvf.exteriorIndex();
assert(interiorDofIdx != exteriorDofIdx);
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
Scalar faceArea = scvf.area();
const Scalar g = problem.gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
const Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
const Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
const Scalar distZ = zIn - zEx;
addConvectiveMixingFlux(flux,
intQuantsIn,
intQuantsEx,
globalIndexIn,
globalIndexEx,
distZ * g,
trans,
faceArea,
problem.moduleParams().convectiveMixingModuleParam);
}
/*!
* \brief Adds the convective mixing mass flux flux to the flux vector over a flux
* integration point.
*/
static void addConvectiveMixingFlux(RateVector& flux,
const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx,
const unsigned globalIndexIn,
const unsigned globalIndexEx,
const Scalar distZg,
const Scalar trans,
const Scalar faceArea,
const ConvectiveMixingModuleParam& info)
{
if (!info.active_) {
return;
}
const auto& liquidPhaseIdx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPhaseIdx :
FluidSystem::oilPhaseIdx;
const Evaluation SoMax = 0.0;
//interiour
const auto& t_in = intQuantsIn.fluidState().temperature(liquidPhaseIdx);
const auto& p_in = intQuantsIn.fluidState().pressure(liquidPhaseIdx);
const auto& rssat_in = FluidSystem::saturatedDissolutionFactor(intQuantsIn.fluidState(),
liquidPhaseIdx,
intQuantsIn.pvtRegionIndex(),
SoMax);
const auto& salt_in = intQuantsIn.fluidState().saltSaturation();
const auto bLiquidSatIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, rssat_in, salt_in):
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, rssat_in);
const auto& densityLiquidIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().waterReferenceDensity(intQuantsIn.pvtRegionIndex()) :
FluidSystem::oilPvt().oilReferenceDensity(intQuantsIn.pvtRegionIndex());
const auto rho_in = Opm::getValue(intQuantsIn.fluidState().invB(liquidPhaseIdx)) * densityLiquidIn;
const auto rho_sat_in = bLiquidSatIn
* (densityLiquidIn + rssat_in * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, intQuantsIn.pvtRegionIndex()));
//exteriour
const auto t_ex = Opm::getValue(intQuantsEx.fluidState().temperature(liquidPhaseIdx));
const auto p_ex = Opm::getValue(intQuantsEx.fluidState().pressure(liquidPhaseIdx));
const auto rssat_ex = Opm::getValue(FluidSystem::saturatedDissolutionFactor(intQuantsEx.fluidState(),
liquidPhaseIdx,
intQuantsEx.pvtRegionIndex(),
SoMax));
const auto salt_ex = Opm::getValue(intQuantsEx.fluidState().saltSaturation());
const auto bLiquidSatEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsEx.pvtRegionIndex(), t_ex, p_ex, rssat_ex, salt_ex):
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsEx.pvtRegionIndex(), t_ex, p_ex, rssat_ex);
const auto& densityLiquidEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().waterReferenceDensity(intQuantsEx.pvtRegionIndex()) :
FluidSystem::oilPvt().oilReferenceDensity(intQuantsEx.pvtRegionIndex());
const auto rho_ex = Opm::getValue(intQuantsEx.fluidState().invB(liquidPhaseIdx)) * densityLiquidEx;
const auto rho_sat_ex = bLiquidSatEx
* (densityLiquidEx + rssat_ex * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, intQuantsEx.pvtRegionIndex()));
//rho difference approximation
const auto delta_rho = (rho_sat_ex + rho_sat_in - rho_in - rho_ex)/2;
const auto pressure_difference_convective_mixing = delta_rho * distZg;
//if change in pressure
if (Opm::abs(pressure_difference_convective_mixing) > 1e-12){
// find new upstream direction
short interiorDofIdx = 0;
short exteriorDofIdx = 1;
short upIdx = 0;
if (pressure_difference_convective_mixing > 0) {
upIdx = exteriorDofIdx;
}
const auto& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
const auto& rssat_up = (upIdx == interiorDofIdx) ? rssat_in : rssat_ex;
unsigned globalUpIndex = (upIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
const auto& Rsup = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
up.fluidState().Rsw() :
up.fluidState().Rs();
const Evaluation& transMult = up.rockCompTransMultiplier();
const auto& invB = up.fluidState().invB(liquidPhaseIdx);
const auto& visc = up.fluidState().viscosity(liquidPhaseIdx);
// We restrict the convective mixing mass flux to rssat * Psi.
const Evaluation RsupRestricted = Opm::min(Rsup, rssat_up*info.Psi_[up.pvtRegionIndex()]);
const auto convectiveFlux = -trans*transMult*info.Xhi_[up.pvtRegionIndex()]*invB*pressure_difference_convective_mixing*RsupRestricted/(visc*faceArea);
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (globalUpIndex == globalIndexIn)
flux[conti0EqIdx + activeGasCompIdx] += convectiveFlux;
else
flux[conti0EqIdx + activeGasCompIdx] += Opm::getValue(convectiveFlux);
if constexpr (enableEnergy) {
const auto& h = up.fluidState().enthalpy(liquidPhaseIdx) * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, up.pvtRegionIndex());
if (globalUpIndex == globalIndexIn) {
flux[contiEnergyEqIdx] += convectiveFlux * h;
}
else {
flux[contiEnergyEqIdx] += Opm::getValue(h) * Opm::getValue(convectiveFlux);
}
}
}
};
};
}
#endif