opm-simulators/opm/models/blackoil/blackoilmodel.hh

634 lines
25 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilModel
*/
#ifndef EWOMS_BLACK_OIL_MODEL_HH
#define EWOMS_BLACK_OIL_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "blackoilproblem.hh"
#include "blackoilindices.hh"
#include "blackoiltwophaseindices.hh"
#include "blackoilextensivequantities.hh"
#include "blackoilprimaryvariables.hh"
#include "blackoilintensivequantities.hh"
#include "blackoilratevector.hh"
#include "blackoilboundaryratevector.hh"
#include "blackoillocalresidual.hh"
#include "blackoilnewtonmethod.hh"
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilfoammodules.hh"
#include "blackoilbrinemodules.hh"
#include "blackoilextbomodules.hh"
#include "blackoildarcyfluxmodule.hh"
#include "blackoilmicpmodules.hh"
#include <opm/models/common/multiphasebasemodel.hh>
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkblackoilmodule.hh>
#include "blackoildiffusionmodule.hh"
#include "blackoildispersionmodule.hh"
#include <opm/models/io/vtkdiffusionmodule.hh>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class BlackOilModel;
template <class TypeTag>
class EclVanguard;
}
namespace Opm::Properties {
namespace TTag {
//! The type tag for the black-oil problems
struct BlackOilModel { using InheritsFrom = std::tuple<VtkComposition,
VtkBlackOilEnergy,
VtkDiffusion,
VtkBlackOilPolymer,
VtkBlackOilSolvent,
VtkBlackOil,
MultiPhaseBaseModel,
VtkBlackOilMICP>; };
} // namespace TTag
//! Set the local residual function
template<class TypeTag>
struct LocalResidual<TypeTag, TTag::BlackOilModel> { using type = BlackOilLocalResidual<TypeTag>; };
//! Use the black-oil specific newton method
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::BlackOilModel> { using type = BlackOilNewtonMethod<TypeTag>; };
//! The Model property
template<class TypeTag>
struct Model<TypeTag, TTag::BlackOilModel> { using type = BlackOilModel<TypeTag>; };
//! The Problem property
template<class TypeTag>
struct BaseProblem<TypeTag, TTag::BlackOilModel> { using type = BlackOilProblem<TypeTag>; };
//! the RateVector property
template<class TypeTag>
struct RateVector<TypeTag, TTag::BlackOilModel> { using type = BlackOilRateVector<TypeTag>; };
//! the BoundaryRateVector property
template<class TypeTag>
struct BoundaryRateVector<TypeTag, TTag::BlackOilModel> { using type = BlackOilBoundaryRateVector<TypeTag>; };
//! the PrimaryVariables property
template<class TypeTag>
struct PrimaryVariables<TypeTag, TTag::BlackOilModel> { using type = BlackOilPrimaryVariables<TypeTag>; };
//! the IntensiveQuantities property
template<class TypeTag>
struct IntensiveQuantities<TypeTag, TTag::BlackOilModel> { using type = BlackOilIntensiveQuantities<TypeTag>; };
//! the ExtensiveQuantities property
template<class TypeTag>
struct ExtensiveQuantities<TypeTag, TTag::BlackOilModel> { using type = BlackOilExtensiveQuantities<TypeTag>; };
//! Use the the velocity module which is aware of the black-oil specific model extensions
//! (i.e., the polymer and solvent extensions)
template<class TypeTag>
struct FluxModule<TypeTag, TTag::BlackOilModel> { using type = BlackOilDarcyFluxModule<TypeTag>; };
//! The indices required by the model
template<class TypeTag>
struct Indices<TypeTag, TTag::BlackOilModel>
{ using type = BlackOilIndices<getPropValue<TypeTag, Properties::EnableSolvent>(),
getPropValue<TypeTag, Properties::EnableExtbo>(),
getPropValue<TypeTag, Properties::EnablePolymer>(),
getPropValue<TypeTag, Properties::EnableEnergy>(),
getPropValue<TypeTag, Properties::EnableFoam>(),
getPropValue<TypeTag, Properties::EnableBrine>(),
/*PVOffset=*/0,
getPropValue<TypeTag, Properties::EnableMICP>()>; };
//! Set the fluid system to the black-oil fluid system by default
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::BlackOilModel>
{
public:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using type = BlackOilFluidSystem<Scalar>;
};
// by default, all ECL extension modules are disabled
template<class TypeTag>
struct EnableSolvent<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableExtbo<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnablePolymer<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnablePolymerMW<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableFoam<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableBrine<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableVapwat<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableDisgasInWater<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableSaltPrecipitation<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableMICP<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
//! By default, the blackoil model is isothermal and does not conserve energy
template<class TypeTag>
struct EnableTemperature<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
//! disable diffusion by default
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
//! disable disperison by default
template<class TypeTag>
struct EnableDispersion<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
template<class TypeTag>
struct EnableConvectiveMixing<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
//! by default, scale the energy equation by the inverse of the energy required to heat
//! up one kg of water by 30 Kelvin. If we conserve surface volumes, this must be divided
//! by the weight of one cubic meter of water. This is required to make the "dumb" linear
//! solvers that do not weight the components of the solutions do the right thing.
//! by default, don't scale the energy equation, i.e. assume that a reasonable linear
//! solver is used. (Not scaling it makes debugging quite a bit easier.)
template<class TypeTag>
struct BlackOilEnergyScalingFactor<TypeTag, TTag::BlackOilModel>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
static constexpr Scalar alpha = getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>() ? 1000.0 : 1.0;
public:
using type = Scalar;
static constexpr Scalar value = 1.0/(30.0*4184.0*alpha);
};
// by default, ebos formulates the conservation equations in terms of mass not surface
// volumes
template<class TypeTag>
struct BlackoilConserveSurfaceVolume<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup BlackOilModel
* \brief A fully-implicit black-oil flow model.
*
* The black-oil model is a three-phase, three-component model widely
* used for oil reservoir simulation. The phases are denoted by lower
* index \f$\alpha \in \{ w, g, o \}\f$ ("water", "gas" and "oil") and
* the components by upper index \f$\kappa \in \{ W, G, O \}\f$
* ("Water", "Gas" and "Oil"). The model assumes partial miscibility:
*
* - Water and the gas phases are immisicible and are assumed to be
* only composed of the water and gas components respectively-
* - The oil phase is assumed to be a mixture of the gas and the oil
* components.
*
* The densities of the phases are determined by so-called
* <i>formation volume factors</i>:
*
* \f[
* B_\alpha := \frac{\varrho_\alpha(1\,\text{bar})}{\varrho_\alpha(p_\alpha)}
* \f]
*
* Since the gas and water phases are assumed to be immiscible, this
* is sufficient to calculate their density. For the formation volume
* factor of the the oil phase \f$B_o\f$ determines the density of
* *saturated* oil, i.e. the density of the oil phase if some gas
* phase is present.
*
* The composition of the oil phase is given by the <i>gas dissolution factor</i>
* \f$R_s\f$, which defined as the volume of gas at atmospheric pressure that is
* dissolved in a given amount of oil at reservoir pressure:
*
* \f[
* R_s := \frac{\varrho_{o}^G}{\varrho_o^O}\;.
* \f]
*
* This allows to calculate all quantities required for the
* mass-conservation equations for each component, i.e.
*
* \f[
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
* - q^\kappa = 0 \;,
* \f]
* where \f$\mathrm{v}_\alpha\f$ is the filter velocity of the phase
* \f$\alpha\f$.
*
* By default \f$\mathrm{v}_\alpha\f$ is determined by using the
* standard multi-phase Darcy approach, i.e.
* \f[ \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
*\left(\mathbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \;, \f]
* although the actual approach which is used can be specified via the
* \c FluxModule property. For example, the velocity model can by
* changed to the Forchheimer approach by
* \code
* template<class TypeTag>
struct FluxModule<TypeTag, TTag::MyProblemTypeTag> { using type = Opm::ForchheimerFluxModule<TypeTag>; };
* \endcode
*
* The primary variables used by this model are:
* - The pressure of the phase with the lowest index
* - The two saturations of the phases with the lowest indices
*/
template<class TypeTag >
class BlackOilModel
: public MultiPhaseBaseModel<TypeTag>
{
public:
using Indices = GetPropType<TypeTag, Properties::Indices>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
private:
using Implementation = GetPropType<TypeTag, Properties::Model>;
using ParentType = MultiPhaseBaseModel<TypeTag>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = FluidSystem::numComponents };
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
static constexpr bool waterEnabled = Indices::waterEnabled;
using SolventModule = BlackOilSolventModule<TypeTag>;
using ExtboModule = BlackOilExtboModule<TypeTag>;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using EnergyModule = BlackOilEnergyModule<TypeTag>;
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
using MICPModule = BlackOilMICPModule<TypeTag>;
public:
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
BlackOilModel(Simulator& simulator)
: ParentType(simulator)
{
eqWeights_.resize(numEq, 1.0);
}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
SolventModule::registerParameters();
ExtboModule::registerParameters();
PolymerModule::registerParameters();
EnergyModule::registerParameters();
DiffusionModule::registerParameters();
MICPModule::registerParameters();
// register runtime parameters of the VTK output modules
VtkBlackOilModule<TypeTag>::registerParameters();
VtkCompositionModule<TypeTag>::registerParameters();
VtkDiffusionModule<TypeTag>::registerParameters();
}
/*!
* \copydoc FvBaseDiscretization::name
*/
static std::string name()
{ return "blackoil"; }
/*!
* \copydoc FvBaseDiscretization::primaryVarName
*/
std::string primaryVarName(int pvIdx) const
{
std::ostringstream oss;
if (pvIdx == Indices::waterSwitchIdx)
oss << "water_switching";
else if (pvIdx == Indices::pressureSwitchIdx)
oss << "pressure_switching";
else if (static_cast<int>(pvIdx) == Indices::compositionSwitchIdx)
oss << "composition_switching";
else if (SolventModule::primaryVarApplies(pvIdx))
return SolventModule::primaryVarName(pvIdx);
else if (ExtboModule::primaryVarApplies(pvIdx))
return ExtboModule::primaryVarName(pvIdx);
else if (PolymerModule::primaryVarApplies(pvIdx))
return PolymerModule::primaryVarName(pvIdx);
else if (EnergyModule::primaryVarApplies(pvIdx))
return EnergyModule::primaryVarName(pvIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::eqName
*/
std::string eqName(int eqIdx) const
{
std::ostringstream oss;
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx + numComponents)
oss << "conti_" << FluidSystem::phaseName(eqIdx - Indices::conti0EqIdx);
else if (SolventModule::eqApplies(eqIdx))
return SolventModule::eqName(eqIdx);
else if (ExtboModule::eqApplies(eqIdx))
return ExtboModule::eqName(eqIdx);
else if (PolymerModule::eqApplies(eqIdx))
return PolymerModule::eqName(eqIdx);
else if (EnergyModule::eqApplies(eqIdx))
return EnergyModule::eqName(eqIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::primaryVarWeight
*/
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
{
// do not care about the auxiliary equations as they are supposed to scale
// themselves
if (globalDofIdx >= this->numGridDof())
return 1.0;
// saturations are always in the range [0, 1]!
if (int(Indices::waterSwitchIdx) == int(pvIdx))
return 1.0;
// oil pressures usually are in the range of 100 to 500 bars for typical oil
// reservoirs (which is the only relevant application for the black-oil model).
else if (int(Indices::pressureSwitchIdx) == int(pvIdx))
return 1.0/300e5;
// deal with primary variables stemming from the solvent module
else if (SolventModule::primaryVarApplies(pvIdx))
return SolventModule::primaryVarWeight(pvIdx);
// deal with primary variables stemming from the extBO module
else if (ExtboModule::primaryVarApplies(pvIdx))
return ExtboModule::primaryVarWeight(pvIdx);
// deal with primary variables stemming from the polymer module
else if (PolymerModule::primaryVarApplies(pvIdx))
return PolymerModule::primaryVarWeight(pvIdx);
// deal with primary variables stemming from the energy module
else if (EnergyModule::primaryVarApplies(pvIdx))
return EnergyModule::primaryVarWeight(pvIdx);
// if the primary variable is either the gas saturation, Rs or Rv
assert(int(Indices::compositionSwitchIdx) == int(pvIdx));
auto pvMeaning = this->solution(0)[globalDofIdx].primaryVarsMeaningGas();
if (pvMeaning == PrimaryVariables::GasMeaning::Sg)
return 1.0; // gas saturation
else if (pvMeaning == PrimaryVariables::GasMeaning::Rs)
return 1.0/250.; // gas dissolution factor
else {
assert(pvMeaning == PrimaryVariables::GasMeaning::Rv);
return 1.0/0.025; // oil vaporization factor
}
}
/*!
* \copydoc FvBaseDiscretization::eqWeight
*/
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
{
// do not care about the auxiliary equations as they are supposed to scale
// themselves
if (globalDofIdx >= this->numGridDof())
return 1.0;
return eqWeights_[eqIdx];
}
void setEqWeight(unsigned eqIdx, Scalar value) {
eqWeights_[eqIdx] = value;
}
/*!
* \brief Write the current solution for a degree of freedom to a
* restart file.
*
* \param outstream The stream into which the vertex data should
* be serialized to
* \param dof The Dune entity which's data should be serialized
*/
template <class DofEntity>
void serializeEntity(std::ostream& outstream, const DofEntity& dof)
{
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
// write phase state
if (!outstream.good())
throw std::runtime_error("Could not serialize degree of freedom "+std::to_string(dofIdx));
// write the primary variables
const auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
outstream << priVars[eqIdx] << " ";
// write the pseudo primary variables
outstream << static_cast<int>(priVars.primaryVarsMeaningGas()) << " ";
outstream << static_cast<int>(priVars.primaryVarsMeaningWater()) << " ";
outstream << static_cast<int>(priVars.primaryVarsMeaningPressure()) << " ";
outstream << priVars.pvtRegionIndex() << " ";
SolventModule::serializeEntity(asImp_(), outstream, dof);
ExtboModule::serializeEntity(asImp_(), outstream, dof);
PolymerModule::serializeEntity(asImp_(), outstream, dof);
EnergyModule::serializeEntity(asImp_(), outstream, dof);
}
/*!
* \brief Reads the current solution variables for a degree of
* freedom from a restart file.
*
* \param instream The stream from which the vertex data should
* be deserialized from
* \param dof The Dune entity which's data should be deserialized
*/
template <class DofEntity>
void deserializeEntity(std::istream& instream,
const DofEntity& dof)
{
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
// read in the "real" primary variables of the DOF
auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
if (!instream.good())
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
instream >> priVars[eqIdx];
}
// read the pseudo primary variables
unsigned primaryVarsMeaningGas;
instream >> primaryVarsMeaningGas;
unsigned primaryVarsMeaningWater;
instream >> primaryVarsMeaningWater;
unsigned primaryVarsMeaningPressure;
instream >> primaryVarsMeaningPressure;
unsigned pvtRegionIdx;
instream >> pvtRegionIdx;
if (!instream.good())
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
SolventModule::deserializeEntity(asImp_(), instream, dof);
ExtboModule::deserializeEntity(asImp_(), instream, dof);
PolymerModule::deserializeEntity(asImp_(), instream, dof);
EnergyModule::deserializeEntity(asImp_(), instream, dof);
using PVM_G = typename PrimaryVariables::GasMeaning;
using PVM_W = typename PrimaryVariables::WaterMeaning;
using PVM_P = typename PrimaryVariables::PressureMeaning;
priVars.setPrimaryVarsMeaningGas(static_cast<PVM_G>(primaryVarsMeaningGas));
priVars.setPrimaryVarsMeaningWater(static_cast<PVM_W>(primaryVarsMeaningWater));
priVars.setPrimaryVarsMeaningPressure(static_cast<PVM_P>(primaryVarsMeaningPressure));
priVars.setPvtRegionIndex(pvtRegionIdx);
}
/*!
* \brief Deserializes the state of the model.
*
* \tparam Restarter The type of the serializer class
*
* \param res The serializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
ParentType::deserialize(res);
// set the PVT indices of the primary variables. This is also done by writing
// them into the restart file and re-reading them, but it is better to calculate
// them from scratch because the input could have been changed in this regard...
ElementContext elemCtx(this->simulator_);
for (const auto& elem : elements(this->gridView())) {
elemCtx.updateStencil(elem);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timIdx=*/0); ++dofIdx) {
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timIdx=*/0);
updatePvtRegionIndex_(this->solution(/*timeIdx=*/0)[globalDofIdx],
elemCtx,
dofIdx,
/*timeIdx=*/0);
}
}
this->solution(/*timeIdx=*/1) = this->solution(/*timeIdx=*/0);
}
/*
// hack: this interferes with the static polymorphism trick
protected:
friend ParentType;
friend Discretization;
*/
template <class Context>
void supplementInitialSolution_(PrimaryVariables& priVars,
const Context& context,
unsigned dofIdx,
unsigned timeIdx)
{ updatePvtRegionIndex_(priVars, context, dofIdx, timeIdx); }
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which make sense for the blackoil model
SolventModule::registerOutputModules(asImp_(), this->simulator_);
PolymerModule::registerOutputModules(asImp_(), this->simulator_);
EnergyModule::registerOutputModules(asImp_(), this->simulator_);
MICPModule::registerOutputModules(asImp_(), this->simulator_);
this->addOutputModule(new VtkBlackOilModule<TypeTag>(this->simulator_));
this->addOutputModule(new VtkCompositionModule<TypeTag>(this->simulator_));
if constexpr (enableDiffusion)
this->addOutputModule(new VtkDiffusionModule<TypeTag>(this->simulator_));
}
private:
std::vector<Scalar> eqWeights_;
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
template <class Context>
void updatePvtRegionIndex_(PrimaryVariables& priVars,
const Context& context,
unsigned dofIdx,
unsigned timeIdx)
{
unsigned regionIdx = context.problem().pvtRegionIndex(context, dofIdx, timeIdx);
priVars.setPvtRegionIndex(regionIdx);
}
};
} // namespace Opm
#endif