mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 04:26:55 -06:00
125 lines
4.4 KiB
C++
125 lines
4.4 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::DiscreteFracturePrimaryVariables
|
|
*/
|
|
#ifndef EWOMS_DISCRETE_FRACTURE_PRIMARY_VARIABLES_HH
|
|
#define EWOMS_DISCRETE_FRACTURE_PRIMARY_VARIABLES_HH
|
|
|
|
#include "discretefractureproperties.hh"
|
|
|
|
#include <opm/models/immiscible/immiscibleprimaryvariables.hh>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup DiscreteFractureModel
|
|
*
|
|
* \brief Represents the primary variables used by the discrete fracture
|
|
* multi-phase model.
|
|
*/
|
|
template <class TypeTag>
|
|
class DiscreteFracturePrimaryVariables
|
|
: public ImmisciblePrimaryVariables<TypeTag>
|
|
{
|
|
using ParentType = ImmisciblePrimaryVariables<TypeTag>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
|
|
public:
|
|
/*!
|
|
* \brief Default constructor
|
|
*/
|
|
DiscreteFracturePrimaryVariables() : ParentType()
|
|
{}
|
|
|
|
/*!
|
|
* \brief Constructor with assignment from scalar
|
|
*
|
|
* \param value The scalar value to which all entries of the vector will be set.
|
|
*/
|
|
DiscreteFracturePrimaryVariables(Scalar value) : ParentType(value)
|
|
{}
|
|
|
|
/*!
|
|
* \brief Copy constructor
|
|
*
|
|
* \param value The primary variables that will be duplicated.
|
|
*/
|
|
DiscreteFracturePrimaryVariables(const DiscreteFracturePrimaryVariables& value) = default;
|
|
DiscreteFracturePrimaryVariables& operator=(const DiscreteFracturePrimaryVariables& value) = default;
|
|
|
|
/*!
|
|
* \brief Directly retrieve the primary variables from an
|
|
* arbitrary fluid state of the fractures.
|
|
*
|
|
* \param fractureFluidState The fluid state of the fractures
|
|
* which should be represented by the
|
|
* primary variables. The temperatures,
|
|
* pressures and compositions of all
|
|
* phases must be defined.
|
|
* \param matParams The parameters for the capillary-pressure law
|
|
* which apply for the fracture.
|
|
*/
|
|
template <class FluidState>
|
|
void assignNaiveFromFracture(const FluidState& fractureFluidState,
|
|
const MaterialLawParams& matParams)
|
|
{
|
|
FluidState matrixFluidState;
|
|
fractureToMatrixFluidState_(matrixFluidState, fractureFluidState,
|
|
matParams);
|
|
|
|
ParentType::assignNaive(matrixFluidState);
|
|
}
|
|
|
|
private:
|
|
template <class FluidState>
|
|
void fractureToMatrixFluidState_(FluidState& matrixFluidState,
|
|
const FluidState& fractureFluidState,
|
|
const MaterialLawParams& matParams) const
|
|
{
|
|
// start with the same fluid state as in the fracture
|
|
matrixFluidState.assign(fractureFluidState);
|
|
|
|
// the condition for the equilibrium is that the pressures are
|
|
// the same in the fracture and in the matrix. This means that
|
|
// we have to find saturations for the matrix which result in
|
|
// the same pressures as in the fracture. this can be done by
|
|
// inverting the capillary pressure-saturation curve.
|
|
Scalar saturations[numPhases];
|
|
MaterialLaw::saturations(saturations, matParams, matrixFluidState);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
matrixFluidState.setSaturation(phaseIdx, saturations[phaseIdx]);
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|