mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 12:36:54 -06:00
3a6cb1422f
remove namespace qualifiers from symbols in Opm namespace
485 lines
17 KiB
C++
485 lines
17 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::NcpModel
|
|
*/
|
|
#ifndef EWOMS_NCP_MODEL_HH
|
|
#define EWOMS_NCP_MODEL_HH
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include "ncpproperties.hh"
|
|
#include "ncplocalresidual.hh"
|
|
#include "ncpextensivequantities.hh"
|
|
#include "ncpprimaryvariables.hh"
|
|
#include "ncpboundaryratevector.hh"
|
|
#include "ncpratevector.hh"
|
|
#include "ncpintensivequantities.hh"
|
|
#include "ncpnewtonmethod.hh"
|
|
#include "ncpindices.hh"
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/models/common/multiphasebasemodel.hh>
|
|
#include <opm/models/common/energymodule.hh>
|
|
#include <opm/models/common/diffusionmodule.hh>
|
|
#include <opm/models/io/vtkcompositionmodule.hh>
|
|
#include <opm/models/io/vtkenergymodule.hh>
|
|
#include <opm/models/io/vtkdiffusionmodule.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <array>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class NcpModel;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
/*!
|
|
* \brief Define the type tag for the compositional NCP model.
|
|
*/
|
|
struct NcpModel { using InheritsFrom = std::tuple<VtkDiffusion,
|
|
VtkEnergy,
|
|
VtkComposition,
|
|
MultiPhaseBaseModel>; };
|
|
} // namespace TTag
|
|
|
|
//! Use the Ncp local jacobian operator for the compositional NCP model
|
|
template<class TypeTag>
|
|
struct LocalResidual<TypeTag, TTag::NcpModel> { using type = NcpLocalResidual<TypeTag>; };
|
|
|
|
//! Use the Ncp specific newton method for the compositional NCP model
|
|
template<class TypeTag>
|
|
struct NewtonMethod<TypeTag, TTag::NcpModel> { using type = NcpNewtonMethod<TypeTag>; };
|
|
|
|
//! the Model property
|
|
template<class TypeTag>
|
|
struct Model<TypeTag, TTag::NcpModel> { using type = NcpModel<TypeTag>; };
|
|
|
|
//! The type of the base base class for actual problems
|
|
template<class TypeTag>
|
|
struct BaseProblem<TypeTag, TTag::NcpModel> { using type = MultiPhaseBaseProblem<TypeTag>; };
|
|
|
|
//! Disable the energy equation by default
|
|
template<class TypeTag>
|
|
struct EnableEnergy<TypeTag, TTag::NcpModel> { static constexpr bool value = false; };
|
|
|
|
//! disable diffusion by default
|
|
template<class TypeTag>
|
|
struct EnableDiffusion<TypeTag, TTag::NcpModel> { static constexpr bool value = false; };
|
|
|
|
//! the RateVector property
|
|
template<class TypeTag>
|
|
struct RateVector<TypeTag, TTag::NcpModel> { using type = NcpRateVector<TypeTag>; };
|
|
|
|
//! the BoundaryRateVector property
|
|
template<class TypeTag>
|
|
struct BoundaryRateVector<TypeTag, TTag::NcpModel> { using type = NcpBoundaryRateVector<TypeTag>; };
|
|
|
|
//! the PrimaryVariables property
|
|
template<class TypeTag>
|
|
struct PrimaryVariables<TypeTag, TTag::NcpModel> { using type = NcpPrimaryVariables<TypeTag>; };
|
|
|
|
//! the IntensiveQuantities property
|
|
template<class TypeTag>
|
|
struct IntensiveQuantities<TypeTag, TTag::NcpModel> { using type = NcpIntensiveQuantities<TypeTag>; };
|
|
|
|
//! the ExtensiveQuantities property
|
|
template<class TypeTag>
|
|
struct ExtensiveQuantities<TypeTag, TTag::NcpModel> { using type = NcpExtensiveQuantities<TypeTag>; };
|
|
|
|
//! The indices required by the compositional NCP model
|
|
template<class TypeTag>
|
|
struct Indices<TypeTag, TTag::NcpModel> { using type = NcpIndices<TypeTag, 0>; };
|
|
|
|
//! The unmodified weight for the pressure primary variable
|
|
template<class TypeTag>
|
|
struct NcpPressureBaseWeight<TypeTag, TTag::NcpModel>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1.0;
|
|
};
|
|
//! The weight for the saturation primary variables
|
|
template<class TypeTag>
|
|
struct NcpSaturationsBaseWeight<TypeTag, TTag::NcpModel>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1.0;
|
|
};
|
|
//! The unmodified weight for the fugacity primary variables
|
|
template<class TypeTag>
|
|
struct NcpFugacitiesBaseWeight<TypeTag, TTag::NcpModel>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1.0e-6;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup NcpModel
|
|
*
|
|
* \brief A compositional multi-phase model based on non-linear
|
|
* complementarity functions.
|
|
*
|
|
* This model implements a \f$M\f$-phase flow of a fluid mixture
|
|
* composed of \f$N\f$ chemical species. The phases are denoted by
|
|
* lower index \f$\alpha \in \{ 1, \dots, M \}\f$. All fluid phases
|
|
* are mixtures of \f$N \geq M - 1\f$ chemical species which are
|
|
* denoted by the upper index \f$\kappa \in \{ 1, \dots, N \} \f$.
|
|
*
|
|
*
|
|
* By default, the standard multi-phase Darcy approach is used to determine
|
|
* the velocity, i.e.
|
|
* \f[
|
|
* \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
|
|
* \left(\mathbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \;,
|
|
* \f]
|
|
* although the actual approach which is used can be specified via the
|
|
* \c FluxModule property. For example, the velocity model can by
|
|
* changed to the Forchheimer approach by
|
|
* \code
|
|
* template<class TypeTag>
|
|
struct FluxModule<TypeTag, TTag::MyProblemTypeTag> { using type = ForchheimerFluxModule<TypeTag>; };
|
|
* \endcode
|
|
*
|
|
* The core of the model is the conservation mass of each component by
|
|
* means of the equation
|
|
* \f[
|
|
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
|
|
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
|
|
* - q^\kappa = 0 \;.
|
|
* \f]
|
|
*
|
|
* For the missing \f$M\f$ model assumptions, the model uses
|
|
* non-linear complementarity functions. These are based on the
|
|
* observation that if a fluid phase is not present, the sum of the
|
|
* mole fractions of this fluid phase is smaller than \f$1\f$, i.e.
|
|
* \f[ \forall \alpha: S_\alpha = 0 \implies \sum_\kappa
|
|
* x_\alpha^\kappa \leq 1 \f]
|
|
*
|
|
* Also, if a fluid phase may be present at a given spatial location
|
|
* its saturation must be non-negative:
|
|
* \f[ \forall \alpha: \sum_\kappa x_\alpha^\kappa = 1 \implies S_\alpha \geq 0
|
|
*\f]
|
|
*
|
|
* Since at any given spatial location, a phase is always either
|
|
* present or not present, one of the strict equalities on the
|
|
* right hand side is always true, i.e.
|
|
* \f[
|
|
* \forall \alpha: S_\alpha \left( \sum_\kappa x_\alpha^\kappa - 1 \right) = 0
|
|
* \f]
|
|
* always holds.
|
|
*
|
|
* These three equations constitute a non-linear complementarity
|
|
* problem, which can be solved using so-called non-linear
|
|
* complementarity functions \f$\Phi(a, b)\f$. Such functions have the property
|
|
* \f[\Phi(a,b) = 0 \iff a \geq0 \land b \geq0 \land a \cdot b = 0 \f]
|
|
*
|
|
* Several non-linear complementarity functions have been suggested,
|
|
* e.g. the Fischer-Burmeister function
|
|
* \f[ \Phi(a,b) = a + b - \sqrt{a^2 + b^2} \;. \f]
|
|
* This model uses
|
|
* \f[ \Phi(a,b) = \min \{a, b \}\;, \f]
|
|
* because of its piecewise linearity.
|
|
*
|
|
* The model assumes local thermodynamic equilibrium and uses the
|
|
* following primary variables:
|
|
* - The pressure of the first phase \f$p_1\f$
|
|
* - The component fugacities \f$f^1, \dots, f^{N}\f$
|
|
* - The saturations of the first \f$M-1\f$ phases \f$S_1, \dots, S_{M-1}\f$
|
|
* - Temperature \f$T\f$ if the energy equation is enabled
|
|
*/
|
|
template <class TypeTag>
|
|
class NcpModel
|
|
: public MultiPhaseBaseModel<TypeTag>
|
|
{
|
|
using ParentType = MultiPhaseBaseModel<TypeTag>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { fugacity0Idx = Indices::fugacity0Idx };
|
|
enum { pressure0Idx = Indices::pressure0Idx };
|
|
enum { saturation0Idx = Indices::saturation0Idx };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { ncp0EqIdx = Indices::ncp0EqIdx };
|
|
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
|
|
using ComponentVector = Dune::FieldVector<Scalar, numComponents>;
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
|
|
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
|
|
using DiffusionModule = Opm::DiffusionModule<TypeTag, enableDiffusion>;
|
|
|
|
public:
|
|
NcpModel(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the immiscible model.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
DiffusionModule::registerParameters();
|
|
EnergyModule::registerParameters();
|
|
|
|
// register runtime parameters of the VTK output modules
|
|
VtkCompositionModule<TypeTag>::registerParameters();
|
|
|
|
if (enableDiffusion)
|
|
VtkDiffusionModule<TypeTag>::registerParameters();
|
|
|
|
if (enableEnergy)
|
|
VtkEnergyModule<TypeTag>::registerParameters();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::finishInit()
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
minActivityCoeff_.resize(this->numGridDof());
|
|
std::fill(minActivityCoeff_.begin(), minActivityCoeff_.end(), 1.0);
|
|
}
|
|
|
|
void adaptGrid()
|
|
{
|
|
ParentType::adaptGrid();
|
|
minActivityCoeff_.resize(this->numGridDof());
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::name
|
|
*/
|
|
static std::string name()
|
|
{ return "ncp"; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::primaryVarName
|
|
*/
|
|
std::string primaryVarName(unsigned pvIdx) const
|
|
{
|
|
std::string s;
|
|
if (!(s = EnergyModule::primaryVarName(pvIdx)).empty())
|
|
return s;
|
|
|
|
std::ostringstream oss;
|
|
if (pvIdx == pressure0Idx)
|
|
oss << "pressure_" << FluidSystem::phaseName(/*phaseIdx=*/0);
|
|
else if (saturation0Idx <= pvIdx && pvIdx < saturation0Idx + (numPhases - 1))
|
|
oss << "saturation_" << FluidSystem::phaseName(/*phaseIdx=*/pvIdx - saturation0Idx);
|
|
else if (fugacity0Idx <= pvIdx && pvIdx < fugacity0Idx + numComponents)
|
|
oss << "fugacity^" << FluidSystem::componentName(pvIdx - fugacity0Idx);
|
|
else
|
|
assert(false);
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::eqName
|
|
*/
|
|
std::string eqName(unsigned eqIdx) const
|
|
{
|
|
std::string s;
|
|
if (!(s = EnergyModule::eqName(eqIdx)).empty())
|
|
return s;
|
|
|
|
std::ostringstream oss;
|
|
if (conti0EqIdx <= eqIdx && eqIdx < conti0EqIdx + numComponents)
|
|
oss << "continuity^" << FluidSystem::componentName(eqIdx - conti0EqIdx);
|
|
else if (ncp0EqIdx <= eqIdx && eqIdx < ncp0EqIdx + numPhases)
|
|
oss << "ncp_" << FluidSystem::phaseName(/*phaseIdx=*/eqIdx - ncp0EqIdx);
|
|
else
|
|
assert(false);
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::updateBegin
|
|
*/
|
|
void updateBegin()
|
|
{
|
|
ParentType::updateBegin();
|
|
|
|
// find the a reference pressure. The first degree of freedom
|
|
// might correspond to non-interior entities which would lead
|
|
// to an undefined value, so we have to iterate...
|
|
for (unsigned dofIdx = 0; dofIdx < this->numGridDof(); ++ dofIdx) {
|
|
if (this->isLocalDof(dofIdx)) {
|
|
referencePressure_ =
|
|
this->solution(/*timeIdx=*/0)[dofIdx][/*pvIdx=*/Indices::pressure0Idx];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::updatePVWeights
|
|
*/
|
|
void updatePVWeights(const ElementContext& elemCtx) const
|
|
{
|
|
for (unsigned dofIdx = 0; dofIdx < elemCtx.numDof(/*timeIdx=*/0); ++dofIdx) {
|
|
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
minActivityCoeff_[globalIdx][compIdx] = 1e100;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
const auto& fs = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState();
|
|
|
|
minActivityCoeff_[globalIdx][compIdx] =
|
|
std::min(minActivityCoeff_[globalIdx][compIdx],
|
|
Toolbox::value(fs.fugacityCoefficient(phaseIdx, compIdx))
|
|
* Toolbox::value(fs.pressure(phaseIdx)));
|
|
Valgrind::CheckDefined(minActivityCoeff_[globalIdx][compIdx]);
|
|
}
|
|
if (minActivityCoeff_[globalIdx][compIdx] <= 0)
|
|
throw NumericalProblem("The minimum activity coefficient for component "+std::to_string(compIdx)
|
|
+" on DOF "+std::to_string(globalIdx)+" is negative or zero!");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::primaryVarWeight
|
|
*/
|
|
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
|
|
{
|
|
Scalar tmp = EnergyModule::primaryVarWeight(*this, globalDofIdx, pvIdx);
|
|
Scalar result;
|
|
if (tmp > 0)
|
|
// energy related quantity
|
|
result = tmp;
|
|
else if (fugacity0Idx <= pvIdx && pvIdx < fugacity0Idx + numComponents) {
|
|
// component fugacity
|
|
unsigned compIdx = pvIdx - fugacity0Idx;
|
|
assert(compIdx <= numComponents);
|
|
|
|
Valgrind::CheckDefined(minActivityCoeff_[globalDofIdx][compIdx]);
|
|
static const Scalar fugacityBaseWeight =
|
|
getPropValue<TypeTag, Properties::NcpFugacitiesBaseWeight>();
|
|
result = fugacityBaseWeight / minActivityCoeff_[globalDofIdx][compIdx];
|
|
}
|
|
else if (Indices::pressure0Idx == pvIdx) {
|
|
static const Scalar pressureBaseWeight = getPropValue<TypeTag, Properties::NcpPressureBaseWeight>();
|
|
result = pressureBaseWeight / referencePressure_;
|
|
}
|
|
else {
|
|
#ifndef NDEBUG
|
|
unsigned phaseIdx = pvIdx - saturation0Idx;
|
|
assert(phaseIdx < numPhases - 1);
|
|
#endif
|
|
|
|
// saturation
|
|
static const Scalar saturationsBaseWeight =
|
|
getPropValue<TypeTag, Properties::NcpSaturationsBaseWeight>();
|
|
result = saturationsBaseWeight;
|
|
}
|
|
|
|
assert(std::isfinite(result));
|
|
assert(result > 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::eqWeight
|
|
*/
|
|
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
|
|
{
|
|
Scalar tmp = EnergyModule::eqWeight(*this, globalDofIdx, eqIdx);
|
|
if (tmp > 0)
|
|
// an energy related equation
|
|
return tmp;
|
|
// an NCP
|
|
else if (ncp0EqIdx <= eqIdx && eqIdx < Indices::ncp0EqIdx + numPhases)
|
|
return 1.0;
|
|
|
|
// a mass conservation equation
|
|
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
|
|
assert(compIdx <= numComponents);
|
|
|
|
// make all kg equal
|
|
return FluidSystem::molarMass(compIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the smallest activity coefficient of a component for the
|
|
* most current solution at a vertex.
|
|
*
|
|
* \param globalDofIdx The global index of the vertex (i.e. finite volume) of interest.
|
|
* \param compIdx The index of the component of interest.
|
|
*/
|
|
Scalar minActivityCoeff(unsigned globalDofIdx, unsigned compIdx) const
|
|
{ return minActivityCoeff_[globalDofIdx][compIdx]; }
|
|
|
|
/*!
|
|
* \internal
|
|
*/
|
|
void registerOutputModules_()
|
|
{
|
|
ParentType::registerOutputModules_();
|
|
|
|
this->addOutputModule(new VtkCompositionModule<TypeTag>(this->simulator_));
|
|
if (enableDiffusion)
|
|
this->addOutputModule(new VtkDiffusionModule<TypeTag>(this->simulator_));
|
|
if (enableEnergy)
|
|
this->addOutputModule(new VtkEnergyModule<TypeTag>(this->simulator_));
|
|
}
|
|
|
|
mutable Scalar referencePressure_;
|
|
mutable std::vector<ComponentVector> minActivityCoeff_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|