mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 12:36:54 -06:00
220 lines
8.4 KiB
C++
220 lines
8.4 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::NcpNewtonMethod
|
|
*/
|
|
#ifndef EWOMS_NCP_NEWTON_METHOD_HH
|
|
#define EWOMS_NCP_NEWTON_METHOD_HH
|
|
|
|
#include "ncpproperties.hh"
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/models/nonlinear/newtonmethod.hh>
|
|
|
|
#include <algorithm>
|
|
|
|
namespace Opm::Properties {
|
|
|
|
template <class TypeTag, class MyTypeTag>
|
|
struct DiscNewtonMethod;
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup NcpModel
|
|
*
|
|
* \brief A Newton solver specific to the NCP model.
|
|
*/
|
|
template <class TypeTag>
|
|
class NcpNewtonMethod : public GetPropType<TypeTag, Properties::DiscNewtonMethod>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::DiscNewtonMethod>;
|
|
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { fugacity0Idx = Indices::fugacity0Idx };
|
|
enum { saturation0Idx = Indices::saturation0Idx };
|
|
enum { pressure0Idx = Indices::pressure0Idx };
|
|
enum { ncp0EqIdx = Indices::ncp0EqIdx };
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc FvBaseNewtonMethod::FvBaseNewtonMethod(Problem& )
|
|
*/
|
|
NcpNewtonMethod(Simulator& simulator) : ParentType(simulator)
|
|
{}
|
|
|
|
protected:
|
|
friend ParentType;
|
|
friend NewtonMethod<TypeTag>;
|
|
|
|
void preSolve_(const SolutionVector&,
|
|
const GlobalEqVector& currentResidual)
|
|
{
|
|
const auto& constraintsMap = this->model().linearizer().constraintsMap();
|
|
this->lastError_ = this->error_;
|
|
|
|
// calculate the error as the maximum weighted tolerance of
|
|
// the solution's residual
|
|
this->error_ = 0;
|
|
for (unsigned dofIdx = 0; dofIdx < currentResidual.size(); ++dofIdx) {
|
|
// do not consider auxiliary DOFs for the error
|
|
if (dofIdx >= this->model().numGridDof() || this->model().dofTotalVolume(dofIdx) <= 0.0)
|
|
continue;
|
|
|
|
// also do not consider DOFs which are constraint
|
|
if (this->enableConstraints_()) {
|
|
if (constraintsMap.count(dofIdx) > 0)
|
|
continue;
|
|
}
|
|
|
|
const auto& r = currentResidual[dofIdx];
|
|
for (unsigned eqIdx = 0; eqIdx < r.size(); ++eqIdx) {
|
|
if (ncp0EqIdx <= eqIdx && eqIdx < Indices::ncp0EqIdx + numPhases)
|
|
continue;
|
|
this->error_ =
|
|
std::max(std::abs(r[eqIdx]*this->model().eqWeight(dofIdx, eqIdx)),
|
|
this->error_);
|
|
}
|
|
}
|
|
|
|
// take the other processes into account
|
|
this->error_ = this->comm_.max(this->error_);
|
|
|
|
// make sure that the error never grows beyond the maximum
|
|
// allowed one
|
|
if (this->error_ > Parameters::get<TypeTag, Parameters::NewtonMaxError>())
|
|
throw Opm::NumericalProblem("Newton: Error "+std::to_string(double(this->error_))+
|
|
+ " is larger than maximum allowed error of "
|
|
+ std::to_string(Parameters::get<TypeTag, Parameters::NewtonMaxError>()));
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseNewtonMethod::updatePrimaryVariables_
|
|
*/
|
|
void updatePrimaryVariables_(unsigned globalDofIdx,
|
|
PrimaryVariables& nextValue,
|
|
const PrimaryVariables& currentValue,
|
|
const EqVector& update,
|
|
const EqVector&)
|
|
{
|
|
// normal Newton-Raphson update
|
|
nextValue = currentValue;
|
|
nextValue -= update;
|
|
|
|
////
|
|
// put crash barriers along the update path
|
|
////
|
|
|
|
// saturations: limit the change of any saturation to at most 20%
|
|
Scalar sumSatDelta = 0.0;
|
|
Scalar maxSatDelta = 0.0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
|
|
maxSatDelta = std::max(std::abs(update[saturation0Idx + phaseIdx]),
|
|
maxSatDelta);
|
|
sumSatDelta += update[saturation0Idx + phaseIdx];
|
|
}
|
|
maxSatDelta = std::max(std::abs(- sumSatDelta), maxSatDelta);
|
|
|
|
if (maxSatDelta > 0.2) {
|
|
Scalar alpha = 0.2/maxSatDelta;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
|
|
nextValue[saturation0Idx + phaseIdx] =
|
|
currentValue[saturation0Idx + phaseIdx]
|
|
- alpha*update[saturation0Idx + phaseIdx];
|
|
}
|
|
}
|
|
|
|
// limit pressure reference change to 20% of the total value per iteration
|
|
clampValue_(nextValue[pressure0Idx],
|
|
currentValue[pressure0Idx]*0.8,
|
|
currentValue[pressure0Idx]*1.2);
|
|
|
|
// fugacities
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
Scalar& val = nextValue[fugacity0Idx + compIdx];
|
|
Scalar oldVal = currentValue[fugacity0Idx + compIdx];
|
|
|
|
// get the minimum activity coefficient for the component (i.e., the activity
|
|
// coefficient of the phase for which the component has the highest affinity)
|
|
Scalar minPhi = this->problem().model().minActivityCoeff(globalDofIdx, compIdx);
|
|
// Make sure that the activity coefficient does not get too small.
|
|
minPhi = std::max(0.001*currentValue[pressure0Idx], minPhi);
|
|
|
|
// allow the mole fraction of the component to change at most 70% in any
|
|
// phase (assuming composition independent fugacity coefficients).
|
|
Scalar maxDelta = 0.7 * minPhi;
|
|
clampValue_(val, oldVal - maxDelta, oldVal + maxDelta);
|
|
|
|
// make sure that fugacities do not become negative
|
|
val = std::max(val, 0.0);
|
|
}
|
|
|
|
// do not become grossly unphysical in a single iteration for the first few
|
|
// iterations of a time step
|
|
if (this->numIterations_ < 3) {
|
|
// fugacities
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
Scalar& val = nextValue[fugacity0Idx + compIdx];
|
|
Scalar oldVal = currentValue[fugacity0Idx + compIdx];
|
|
Scalar minPhi = this->problem().model().minActivityCoeff(globalDofIdx, compIdx);
|
|
if (oldVal < 1.0*minPhi && val > 1.0*minPhi)
|
|
val = 1.0*minPhi;
|
|
else if (oldVal > 0.0 && val < 0.0)
|
|
val = 0.0;
|
|
}
|
|
|
|
// saturations
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
|
|
Scalar& val = nextValue[saturation0Idx + phaseIdx];
|
|
Scalar oldVal = currentValue[saturation0Idx + phaseIdx];
|
|
if (oldVal < 1.0 && val > 1.0)
|
|
val = 1.0;
|
|
else if (oldVal > 0.0 && val < 0.0)
|
|
val = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
void clampValue_(Scalar& val, Scalar minVal, Scalar maxVal) const
|
|
{ val = std::max(minVal, std::min(val, maxVal)); }
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|