opm-simulators/opm/models/utils/simulator.hh

1015 lines
33 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::Simulator
*/
#ifndef EWOMS_SIMULATOR_HH
#define EWOMS_SIMULATOR_HH
#include <opm/models/io/restart.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/models/utils/basicproperties.hh>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/timer.hh>
#include <opm/models/utils/timerguard.hh>
#include <opm/models/parallel/mpiutil.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <vector>
#include <string>
#include <memory>
namespace Opm
{
namespace detail
{
inline auto getMPIHelperCommunication()
{
return Dune::MPIHelper::getCommunication();
}
} // end namespace detail
} // end namespace Opm
#define EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(code) \
{ \
const auto& comm = ::Opm::detail::getMPIHelperCommunication(); \
bool exceptionThrown = false; \
try { code; } \
catch (const Dune::Exception& e) { \
exceptionThrown = true; \
std::cerr << "Process " << comm.rank() << " threw a fatal exception: " \
<< e.what() << ". Abort!" << std::endl; \
} \
catch (const std::exception& e) { \
exceptionThrown = true; \
std::cerr << "Process " << comm.rank() << " threw a fatal exception: " \
<< e.what() << ". Abort!" << std::endl; \
} \
catch (...) { \
exceptionThrown = true; \
std::cerr << "Process " << comm.rank() << " threw a fatal exception. " \
<<" Abort!" << std::endl; \
} \
\
if (comm.max(exceptionThrown)) \
std::abort(); \
}
namespace Opm {
/*!
* \ingroup Common
*
* \brief Manages the initializing and running of time dependent
* problems.
*
* This class instantiates the grid, the model and the problem to be
* simlated and runs the simulation loop. The time axis is treated as
* a sequence of "episodes" which are defined as time intervals for
* which the problem exhibits boundary conditions and source terms
* that do not depend on time.
*/
template <class TypeTag>
class Simulator
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using MPIComm = typename Dune::MPIHelper::MPICommunicator;
using Communication = Dune::Communication<MPIComm>;
public:
// do not allow to copy simulators around
Simulator(const Simulator& ) = delete;
Simulator(bool verbose = true)
:Simulator(Communication(), verbose)
{
}
Simulator(Communication comm, bool verbose = true)
{
TimerGuard setupTimerGuard(setupTimer_);
setupTimer_.start();
verbose_ = verbose && comm.rank() == 0;
timeStepIdx_ = 0;
startTime_ = 0.0;
time_ = 0.0;
endTime_ = Parameters::get<TypeTag, Parameters::EndTime>();
timeStepSize_ = Parameters::get<TypeTag, Parameters::InitialTimeStepSize>();
assert(timeStepSize_ > 0);
const std::string& predetTimeStepFile =
Parameters::get<TypeTag, Parameters::PredeterminedTimeStepsFile>();
if (!predetTimeStepFile.empty()) {
std::ifstream is(predetTimeStepFile);
while (!is.eof()) {
Scalar dt;
is >> dt;
forcedTimeSteps_.push_back(dt);
}
}
episodeIdx_ = 0;
episodeStartTime_ = 0;
episodeLength_ = std::numeric_limits<Scalar>::max();
finished_ = false;
if (verbose_)
std::cout << "Allocating the simulation vanguard\n" << std::flush;
int exceptionThrown = 0;
std::string what;
auto catchAction =
[&exceptionThrown, &what, comm](const std::exception& e,
bool doPrint) {
exceptionThrown = 1;
what = e.what();
if (comm.size() > 1) {
what += " (on rank " + std::to_string(comm.rank()) + ")";
}
if (doPrint)
std::cerr << "Rank " << comm.rank() << " threw an exception: " << e.what() << std::endl;
};
auto checkParallelException =
[comm](const std::string& prefix,
int exceptionThrown_,
const std::string& what_)
{
if (comm.max(exceptionThrown_)) {
auto all_what = gatherStrings(what_);
assert(!all_what.empty());
throw std::runtime_error(prefix + all_what.front());
}
};
try
{ vanguard_.reset(new Vanguard(*this)); }
catch (const std::exception& e) {
catchAction(e, verbose_);
}
checkParallelException("Allocating the simulation vanguard failed: ",
exceptionThrown, what);
if (verbose_)
std::cout << "Distributing the vanguard's data\n" << std::flush;
try
{ vanguard_->loadBalance(); }
catch (const std::exception& e) {
catchAction(e, verbose_);
}
checkParallelException("Could not distribute the vanguard data: ",
exceptionThrown, what);
if (verbose_)
std::cout << "Allocating the model\n" << std::flush;
try {
model_.reset(new Model(*this));
}
catch (const std::exception& e) {
catchAction(e, verbose_);
}
checkParallelException("Could not allocate model: ",
exceptionThrown, what);
if (verbose_)
std::cout << "Allocating the problem\n" << std::flush;
try {
problem_.reset(new Problem(*this));
}
catch (const std::exception& e) {
catchAction(e, verbose_);
}
checkParallelException("Could not allocate the problem: ",
exceptionThrown, what);
if (verbose_)
std::cout << "Initializing the model\n" << std::flush;
try
{ model_->finishInit(); }
catch (const std::exception& e) {
catchAction(e, verbose_);
}
checkParallelException("Could not initialize the model: ",
exceptionThrown, what);
if (verbose_)
std::cout << "Initializing the problem\n" << std::flush;
try
{ problem_->finishInit(); }
catch (const std::exception& e) {
catchAction(e, verbose_);
}
checkParallelException("Could not initialize the problem: ",
exceptionThrown, what);
setupTimer_.stop();
if (verbose_)
std::cout << "Simulator successfully set up\n" << std::flush;
}
/*!
* \brief Registers all runtime parameters used by the simulation.
*/
static void registerParameters()
{
Parameters::registerParam<TypeTag, Parameters::EndTime>
("The simulation time at which the simulation is finished [s]");
Parameters::registerParam<TypeTag, Parameters::InitialTimeStepSize>
("The size of the initial time step [s]");
Parameters::registerParam<TypeTag, Parameters::RestartTime>
("The simulation time at which a restart should be attempted [s]");
Parameters::registerParam<TypeTag, Parameters::PredeterminedTimeStepsFile>
("A file with a list of predetermined time step sizes (one "
"time step per line)");
Vanguard::registerParameters();
Model::registerParameters();
Problem::registerParameters();
}
/*!
* \brief Return a reference to the grid manager of simulation
*/
Vanguard& vanguard()
{ return *vanguard_; }
/*!
* \brief Return a reference to the grid manager of simulation
*/
const Vanguard& vanguard() const
{ return *vanguard_; }
/*!
* \brief Return the grid view for which the simulation is done
*/
const GridView& gridView() const
{ return vanguard_->gridView(); }
/*!
* \brief Return the physical model used in the simulation
*/
Model& model()
{ return *model_; }
/*!
* \brief Return the physical model used in the simulation
*/
const Model& model() const
{ return *model_; }
/*!
* \brief Return the object which specifies the pysical setup of
* the simulation
*/
Problem& problem()
{ return *problem_; }
/*!
* \brief Return the object which specifies the pysical setup of
* the simulation
*/
const Problem& problem() const
{ return *problem_; }
/*!
* \brief Set the time of the start of the simulation.
*
* \param t The time \f$\mathrm{[s]}\f$ which should be jumped to
*/
void setStartTime(Scalar t)
{ startTime_ = t; }
/*!
* \brief Return the time of the start of the simulation.
*/
Scalar startTime() const
{ return startTime_; }
/*!
* \brief Set the current simulated time, don't change the current
* time step index.
*
* \param t The time \f$\mathrm{[s]}\f$ which should be jumped to
*/
void setTime(Scalar t)
{ time_ = t; }
/*!
* \brief Set the current simulated time and the time step index.
*
* \param t The time \f$\mathrm{[s]}\f$ which should be jumped to
* \param stepIdx The new time step index
*/
void setTime(Scalar t, unsigned stepIdx)
{
time_ = t;
timeStepIdx_ = stepIdx;
}
/*!
* \brief Return the number of seconds of simulated time which have elapsed since the
* start time.
*
* To get the time after the time integration, you have to add
* timeStepSize() to time().
*/
Scalar time() const
{ return time_; }
/*!
* \brief Set the time of simulated seconds at which the simulation runs.
*
* \param t The time \f$\mathrm{[s]}\f$ at which the simulation is finished
*/
void setEndTime(Scalar t)
{ endTime_ = t; }
/*!
* \brief Returns the number of (simulated) seconds which the simulation
* runs.
*/
Scalar endTime() const
{ return endTime_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* set up and initialize the simulation
*/
const Timer& setupTimer() const
{ return setupTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* run the simulation
*/
const Timer& executionTimer() const
{ return executionTimer_; }
Timer& executionTimer()
{ return executionTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed for
* pre- and postprocessing of the solutions.
*/
const Timer& prePostProcessTimer() const
{ return prePostProcessTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed for
* linarizing the solutions.
*/
const Timer& linearizeTimer() const
{ return linearizeTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed by
* the solver.
*/
const Timer& solveTimer() const
{ return solveTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* the solutions of the non-linear system of equations.
*/
const Timer& updateTimer() const
{ return updateTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* write the visualization output
*/
const Timer& writeTimer() const
{ return writeTimer_; }
/*!
* \brief Set the current time step size to a given value.
*
* If the step size would exceed the length of the current
* episode, the timeStep() method will take care that the step
* size won't exceed the episode or the end of the simulation,
* though.
*
* \param timeStepSize The new value for the time step size \f$\mathrm{[s]}\f$
*/
void setTimeStepSize(Scalar value)
{
timeStepSize_ = value;
}
/*!
* \brief Set the current time step index to a given value.
*
* \param timeStepIndex The new value for the time step index
*/
void setTimeStepIndex(unsigned value)
{ timeStepIdx_ = value; }
/*!
* \brief Returns the time step length \f$\mathrm{[s]}\f$ so that we
* don't miss the beginning of the next episode or cross
* the end of the simlation.
*/
Scalar timeStepSize() const
{ return timeStepSize_; }
/*!
* \brief Returns number of time steps which have been
* executed since the beginning of the simulation.
*/
int timeStepIndex() const
{ return timeStepIdx_; }
/*!
* \brief Specify whether the simulation is finished
*
* \param yesno If true the simulation is considered finished
* before the end time is reached, else it is only
* considered finished if the end time is reached.
*/
void setFinished(bool yesno = true)
{ finished_ = yesno; }
/*!
* \brief Returns true if the simulation is finished.
*
* This is the case if either setFinished(true) has been called or
* if the end time is reached.
*/
bool finished() const
{
assert(timeStepSize_ >= 0.0);
Scalar eps =
std::max(Scalar(std::abs(this->time())), timeStepSize())
*std::numeric_limits<Scalar>::epsilon()*1e3;
return finished_ || (this->time()*(1.0 + eps) >= endTime());
}
/*!
* \brief Returns true if the simulation is finished after the
* time level is incremented by the current time step size.
*/
bool willBeFinished() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return finished_ || (this->time() + timeStepSize_)*(1.0 + eps) >= endTime();
}
/*!
* \brief Aligns the time step size to the episode boundary and to
* the end time of the simulation.
*/
Scalar maxTimeStepSize() const
{
if (finished())
return 0.0;
return std::min(episodeMaxTimeStepSize(),
std::max<Scalar>(0.0, endTime() - this->time()));
}
/*!
* \brief Change the current episode of the simulation.
*
* \param episodeStartTime Time when the episode began \f$\mathrm{[s]}\f$
* \param episodeLength Length of the episode \f$\mathrm{[s]}\f$
*/
void startNextEpisode(Scalar episodeStartTime, Scalar episodeLength)
{
++episodeIdx_;
episodeStartTime_ = episodeStartTime;
episodeLength_ = episodeLength;
}
/*!
* \brief Start the next episode, but don't change the episode
* identifier.
*
* \param len Length of the episode \f$\mathrm{[s]}\f$, infinite if not
* specified.
*/
void startNextEpisode(Scalar len = std::numeric_limits<Scalar>::max())
{
++episodeIdx_;
episodeStartTime_ = startTime_ + time_;
episodeLength_ = len;
}
/*!
* \brief Sets the index of the current episode.
*
* Use this method with care!
*/
void setEpisodeIndex(int episodeIdx)
{ episodeIdx_ = episodeIdx; }
/*!
* \brief Returns the index of the current episode.
*
* The first episode has the index 0.
*/
int episodeIndex() const
{ return episodeIdx_; }
/*!
* \brief Returns the absolute time when the current episode
* started \f$\mathrm{[s]}\f$.
*/
Scalar episodeStartTime() const
{ return episodeStartTime_; }
/*!
* \brief Sets the length in seconds of the current episode.
*
* Use this method with care!
*/
void setEpisodeLength(Scalar dt)
{ episodeLength_ = dt; }
/*!
* \brief Returns the length of the current episode in
* simulated time \f$\mathrm{[s]}\f$.
*/
Scalar episodeLength() const
{ return episodeLength_; }
/*!
* \brief Returns true if the current episode has just been started at the
* current time.
*/
bool episodeStarts() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return this->time() <= (episodeStartTime_ - startTime())*(1 + eps);
}
/*!
* \brief Returns true if the current episode is finished at the
* current time.
*/
bool episodeIsOver() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return this->time() >= (episodeStartTime_ - startTime() + episodeLength())*(1 - eps);
}
/*!
* \brief Returns true if the current episode will be finished
* after the current time step.
*/
bool episodeWillBeOver() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return this->time() + timeStepSize()
>= (episodeStartTime_ - startTime() + episodeLength())*(1 - eps);
}
/*!
* \brief Aligns the time step size to the episode boundary if the
* current time step crosses the boundary of the current episode.
*/
Scalar episodeMaxTimeStepSize() const
{
// if the current episode is over and the simulation
// wants to give it some extra time, we will return
// the time step size it suggested instead of trying
// to align it to the end of the episode.
if (episodeIsOver())
return 0.0;
// make sure that we don't exceed the end of the
// current episode.
return std::max<Scalar>(0.0,
(episodeStartTime() + episodeLength())
- (this->time() + this->startTime()));
}
/*
* \}
*/
/*!
* \brief Runs the simulation using a given problem class.
*
* This method makes sure that time steps sizes are aligned to
* episode boundaries, amongst other stuff.
*/
void run()
{
// create TimerGuard objects to hedge for exceptions
TimerGuard setupTimerGuard(setupTimer_);
TimerGuard executionTimerGuard(executionTimer_);
TimerGuard prePostProcessTimerGuard(prePostProcessTimer_);
TimerGuard writeTimerGuard(writeTimer_);
setupTimer_.start();
Scalar restartTime = Parameters::get<TypeTag, Parameters::RestartTime>();
if (restartTime > -1e30) {
// try to restart a previous simulation
time_ = restartTime;
Restart res;
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(res.deserializeBegin(*this, time_));
if (verbose_)
std::cout << "Deserialize from file '" << res.fileName() << "'\n" << std::flush;
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(this->deserialize(res));
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->deserialize(res));
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(model_->deserialize(res));
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(res.deserializeEnd());
if (verbose_)
std::cout << "Deserialization done."
<< " Simulator time: " << time() << humanReadableTime(time())
<< " Time step index: " << timeStepIndex()
<< " Episode index: " << episodeIndex()
<< "\n" << std::flush;
}
else {
// if no restart is done, apply the initial solution
if (verbose_)
std::cout << "Applying the initial solution of the \"" << problem_->name()
<< "\" problem\n" << std::flush;
Scalar oldTimeStepSize = timeStepSize_;
int oldTimeStepIdx = timeStepIdx_;
timeStepSize_ = 0.0;
timeStepIdx_ = -1;
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(model_->applyInitialSolution());
// write initial condition
if (problem_->shouldWriteOutput())
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->writeOutput());
timeStepSize_ = oldTimeStepSize;
timeStepIdx_ = oldTimeStepIdx;
}
setupTimer_.stop();
executionTimer_.start();
bool episodeBegins = episodeIsOver() || (timeStepIdx_ == 0);
// do the time steps
while (!finished()) {
prePostProcessTimer_.start();
if (episodeBegins) {
// notify the problem that a new episode has just been
// started.
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->beginEpisode());
if (finished()) {
// the problem can chose to terminate the simulation in
// beginEpisode(), so we have handle this case.
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endEpisode());
prePostProcessTimer_.stop();
break;
}
}
episodeBegins = false;
if (verbose_) {
std::cout << "Begin time step " << timeStepIndex() + 1 << ". "
<< "Start time: " << this->time() << " seconds" << humanReadableTime(this->time())
<< ", step size: " << timeStepSize() << " seconds" << humanReadableTime(timeStepSize())
<< "\n";
}
// pre-process the current solution
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->beginTimeStep());
if (finished()) {
// the problem can chose to terminate the simulation in
// beginTimeStep(), so we have handle this case.
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endTimeStep());
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endEpisode());
prePostProcessTimer_.stop();
break;
}
prePostProcessTimer_.stop();
try {
// execute the time integration scheme
problem_->timeIntegration();
}
catch (...) {
// exceptions in the time integration might be recoverable. clean up in
// case they are
const auto& model = problem_->model();
prePostProcessTimer_ += model.prePostProcessTimer();
linearizeTimer_ += model.linearizeTimer();
solveTimer_ += model.solveTimer();
updateTimer_ += model.updateTimer();
throw;
}
const auto& model = problem_->model();
prePostProcessTimer_ += model.prePostProcessTimer();
linearizeTimer_ += model.linearizeTimer();
solveTimer_ += model.solveTimer();
updateTimer_ += model.updateTimer();
// post-process the current solution
prePostProcessTimer_.start();
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endTimeStep());
prePostProcessTimer_.stop();
// write the result to disk
writeTimer_.start();
if (problem_->shouldWriteOutput())
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->writeOutput());
writeTimer_.stop();
// do the next time integration
Scalar oldDt = timeStepSize();
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->advanceTimeLevel());
if (verbose_) {
std::cout << "Time step " << timeStepIndex() + 1 << " done. "
<< "CPU time: " << executionTimer_.realTimeElapsed() << " seconds" << humanReadableTime(executionTimer_.realTimeElapsed())
<< ", end time: " << this->time() + oldDt << " seconds" << humanReadableTime(this->time() + oldDt)
<< ", step size: " << oldDt << " seconds" << humanReadableTime(oldDt)
<< "\n" << std::flush;
}
// advance the simulated time by the current time step size
time_ += oldDt;
++timeStepIdx_;
prePostProcessTimer_.start();
// notify the problem if an episode is finished
if (episodeIsOver()) {
// Notify the problem about the end of the current episode...
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endEpisode());
episodeBegins = true;
}
else {
Scalar dt;
if (timeStepIdx_ < static_cast<int>(forcedTimeSteps_.size()))
// use the next time step size from the input file
dt = forcedTimeSteps_[timeStepIdx_];
else
// ask the problem to provide the next time step size
dt = std::min(maxTimeStepSize(), problem_->nextTimeStepSize());
assert(finished() || dt > 0);
setTimeStepSize(dt);
}
prePostProcessTimer_.stop();
// write restart file if mandated by the problem
writeTimer_.start();
if (problem_->shouldWriteRestartFile())
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(serialize());
writeTimer_.stop();
}
executionTimer_.stop();
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->finalize());
}
/*!
* \brief Given a time step size in seconds, return it in a format which is more
* easily parsable by humans.
*
* e.g. 874000.0 will become "10.12 days"
*/
static std::string humanReadableTime(Scalar timeInSeconds, bool isAmendment=true)
{
std::ostringstream oss;
oss << std::setprecision(4);
if (isAmendment)
oss << " (";
if (timeInSeconds >= 365.25*24*60*60) {
int years = static_cast<int>(timeInSeconds/(365.25*24*60*60));
int days = static_cast<int>((timeInSeconds - years*(365.25*24*60*60))/(24*60*60));
double accuracy = 1e-2;
double hours =
std::round(1.0/accuracy*
(timeInSeconds
- years*(365.25*24*60*60)
- days*(24*60*60))/(60*60))
*accuracy;
oss << years << " years, " << days << " days, " << hours << " hours";
}
else if (timeInSeconds >= 24.0*60*60) {
int days = static_cast<int>(timeInSeconds/(24*60*60));
int hours = static_cast<int>((timeInSeconds - days*(24*60*60))/(60*60));
double accuracy = 1e-2;
double minutes =
std::round(1.0/accuracy*
(timeInSeconds
- days*(24*60*60)
- hours*(60*60))/60)
*accuracy;
oss << days << " days, " << hours << " hours, " << minutes << " minutes";
}
else if (timeInSeconds >= 60.0*60) {
int hours = static_cast<int>(timeInSeconds/(60*60));
int minutes = static_cast<int>((timeInSeconds - hours*(60*60))/60);
double accuracy = 1e-2;
double seconds =
std::round(1.0/accuracy*
(timeInSeconds
- hours*(60*60)
- minutes*60))
*accuracy;
oss << hours << " hours, " << minutes << " minutes, " << seconds << " seconds";
}
else if (timeInSeconds >= 60.0) {
int minutes = static_cast<int>(timeInSeconds/60);
double accuracy = 1e-3;
double seconds =
std::round(1.0/accuracy*
(timeInSeconds
- minutes*60))
*accuracy;
oss << minutes << " minutes, " << seconds << " seconds";
}
else if (!isAmendment)
oss << timeInSeconds << " seconds";
else
return "";
if (isAmendment)
oss << ")";
return oss.str();
}
/*!
* \name Saving/restoring the simulation state
* \{
*/
/*!
* \brief This method writes the complete state of the simulation
* to the harddisk.
*
* The file will start with the prefix returned by the name()
* method, has the current time of the simulation clock in it's
* name and uses the extension <tt>.ers</tt>. (Ewoms ReStart
* file.) See Opm::Restart for details.
*/
void serialize()
{
using Restarter = Restart;
Restarter res;
res.serializeBegin(*this);
if (gridView().comm().rank() == 0)
std::cout << "Serialize to file '" << res.fileName() << "'"
<< ", next time step size: " << timeStepSize()
<< "\n" << std::flush;
this->serialize(res);
problem_->serialize(res);
model_->serialize(res);
res.serializeEnd();
}
/*!
* \brief Write the time manager's state to a restart file.
*
* \tparam Restarter The type of the object which takes care to serialize
* data
* \param restarter The serializer object
*/
template <class Restarter>
void serialize(Restarter& restarter)
{
restarter.serializeSectionBegin("Simulator");
restarter.serializeStream()
<< episodeIdx_ << " "
<< episodeStartTime_ << " "
<< episodeLength_ << " "
<< startTime_ << " "
<< time_ << " "
<< timeStepIdx_ << " ";
restarter.serializeSectionEnd();
}
/*!
* \brief Read the time manager's state from a restart file.
*
* \tparam Restarter The type of the object which takes care to deserialize
* data
* \param restarter The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& restarter)
{
restarter.deserializeSectionBegin("Simulator");
restarter.deserializeStream()
>> episodeIdx_
>> episodeStartTime_
>> episodeLength_
>> startTime_
>> time_
>> timeStepIdx_;
restarter.deserializeSectionEnd();
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(*vanguard_);
serializer(*model_);
serializer(*problem_);
serializer(episodeIdx_);
serializer(episodeStartTime_);
serializer(episodeLength_);
serializer(startTime_);
serializer(time_);
serializer(timeStepIdx_);
}
private:
std::unique_ptr<Vanguard> vanguard_;
std::unique_ptr<Model> model_;
std::unique_ptr<Problem> problem_;
int episodeIdx_;
Scalar episodeStartTime_;
Scalar episodeLength_;
Timer setupTimer_;
Timer executionTimer_;
Timer prePostProcessTimer_;
Timer linearizeTimer_;
Timer solveTimer_;
Timer updateTimer_;
Timer writeTimer_;
std::vector<Scalar> forcedTimeSteps_;
Scalar startTime_;
Scalar time_;
Scalar endTime_;
Scalar timeStepSize_;
int timeStepIdx_;
bool finished_;
bool verbose_;
};
namespace Properties {
template<class TypeTag>
struct Simulator<TypeTag, TTag::NumericModel> { using type = ::Opm::Simulator<TypeTag>; };
}
} // namespace Opm
#endif