mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-29 04:23:48 -06:00
7127101c1c
Currently, there are two abstract interface for the grids. One that usually returns pods and arrays of them that also can be used by C and is used also in opm-core, and one that returns Eigen datastructures needed within opm-autodiff. This commit adds a postfix ToEigen to those functions (faceCells, and cellCentroidsZ) one could imagine to also return pods and arrays of them. This should at least resolve the confusion about the two faceCells functions. The next step will be issue #192 Fixes #176
676 lines
24 KiB
C++
676 lines
24 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/ImpesTPFAAD.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/wells.h>
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
namespace Opm {
|
|
|
|
// Repeated from inside ImpesTPFAAD for convenience.
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
|
|
|
|
namespace {
|
|
std::vector<int>
|
|
buildAllCells(const int nc)
|
|
{
|
|
std::vector<int> all_cells(nc);
|
|
|
|
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
|
|
|
return all_cells;
|
|
}
|
|
|
|
template <class GeoProps>
|
|
AutoDiffBlock<double>::M
|
|
gravityOperator(const UnstructuredGrid& grid,
|
|
const HelperOps& ops ,
|
|
const GeoProps& geo )
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid);
|
|
|
|
std::vector<int> f2hf(2 * numFaces(grid), -1);
|
|
Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor>
|
|
face_cells = faceCellsToEigen(grid);
|
|
|
|
typedef typename Opm::UgGridHelpers::Cell2FacesTraits<UnstructuredGrid>::Type
|
|
Cell2Faces;
|
|
Cell2Faces c2f=cell2Faces(grid);
|
|
for (int c = 0; c < nc; ++c) {
|
|
typename Cell2Faces::row_type
|
|
cell_faces = c2f[c];
|
|
typedef typename Cell2Faces::row_type::iterator Iter;
|
|
for (Iter f=cell_faces.begin(), end=cell_faces.end();
|
|
f!=end; ++f) {
|
|
const int p = 0 + (face_cells(*f,0) != c);
|
|
f2hf[2*(*f) + p] = f-c2f[0].begin();
|
|
}
|
|
}
|
|
|
|
typedef AutoDiffBlock<double>::V V;
|
|
typedef AutoDiffBlock<double>::M M;
|
|
|
|
const V& gpot = geo.gravityPotential();
|
|
const V& trans = geo.transmissibility();
|
|
|
|
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
|
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> grav; grav.reserve(2 * ni);
|
|
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
|
const int f = ops.internal_faces[ i ];
|
|
const int c1 = face_cells(f,0);
|
|
const int c2 = face_cells(f,1);
|
|
|
|
assert ((c1 >= 0) && (c2 >= 0));
|
|
|
|
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
|
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
|
const double t = trans[ f ];
|
|
|
|
grav.push_back(Tri(i, c1, t * dG1));
|
|
grav.push_back(Tri(i, c2, - t * dG2));
|
|
}
|
|
|
|
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
|
|
|
return G;
|
|
}
|
|
|
|
V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nw = wells.number_of_wells;
|
|
const int nperf = wells.well_connpos[nw];
|
|
const int dim = dimensions(grid);
|
|
V wdp = V::Zero(nperf,1);
|
|
assert(wdp.size() == rho.size());
|
|
|
|
// Main loop, iterate over all perforations,
|
|
// using the following formula:
|
|
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
|
|
// where the total density rho(perf) is taken to be
|
|
// sum_p (rho_p*saturation_p) in the perforation cell.
|
|
// [although this is computed on the outside of this function].
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double ref_depth = wells.depth_ref[w];
|
|
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
|
|
const int cell = wells.well_cells[j];
|
|
const double cell_depth = grid.cell_centroids[dim * cell + dim - 1];
|
|
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
|
|
}
|
|
}
|
|
return wdp;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
|
|
ImpesTPFAAD::ImpesTPFAAD(const UnstructuredGrid& grid,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo,
|
|
const Wells& wells,
|
|
const LinearSolverInterface& linsolver)
|
|
: grid_ (grid)
|
|
, fluid_ (fluid)
|
|
, geo_ (geo)
|
|
, wells_ (wells)
|
|
, linsolver_(linsolver)
|
|
// , pdepfdata_(grid.number_of_cells, fluid)
|
|
, ops_ (grid)
|
|
, grav_ (gravityOperator(grid_, ops_, geo_))
|
|
, cell_residual_ (ADB::null())
|
|
, well_flow_residual_ ()
|
|
, well_residual_ (ADB::null())
|
|
, total_residual_ (ADB::null())
|
|
, qs_ (ADB::null())
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::solve(const double dt,
|
|
BlackoilState& state,
|
|
WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
|
|
well_flow_residual_.resize(np, ADB::null());
|
|
|
|
// Compute dynamic data that are treated explicitly.
|
|
computeExplicitData(dt, state, well_state);
|
|
// Compute relperms once and for all (since saturations are explicit).
|
|
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
|
assert(np == 2);
|
|
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
|
// Compute relperms for wells. This must be revisited for crossflow.
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
DataBlock well_s(nperf, np);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double* comp_frac = &wells_.comp_frac[np*w];
|
|
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
|
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
|
}
|
|
}
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
|
|
|
const double atol = 1.0e-10;
|
|
const double rtol = 5.0e-6;
|
|
const int maxit = 15;
|
|
|
|
assemble(dt, state, well_state);
|
|
|
|
const double r0 = residualNorm();
|
|
int it = 0;
|
|
std::cout << "\nIteration Residual\n"
|
|
<< std::setw(9) << it << std::setprecision(9)
|
|
<< std::setw(18) << r0 << std::endl;
|
|
bool resTooLarge = r0 > atol;
|
|
while (resTooLarge && (it < maxit)) {
|
|
solveJacobianSystem(state, well_state);
|
|
|
|
assemble(dt, state, well_state);
|
|
|
|
const double r = residualNorm();
|
|
|
|
resTooLarge = (r > atol) && (r > rtol*r0);
|
|
|
|
it += 1;
|
|
|
|
std::cout << std::setw(9) << it << std::setprecision(9)
|
|
<< std::setw(18) << r << std::endl;
|
|
}
|
|
|
|
if (resTooLarge) {
|
|
OPM_THROW(std::runtime_error, "Failed to compute converged pressure solution");
|
|
}
|
|
else {
|
|
computeFluxes(state, well_state);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::computeExplicitData(const double dt,
|
|
const BlackoilState& state,
|
|
const WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
// Suppress warnings about "unused parameters".
|
|
static_cast<void>(dt);
|
|
static_cast<void>(well_state);
|
|
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
const int dim = dimensions(grid_);
|
|
|
|
const std::vector<int> cells = buildAllCells(nc);
|
|
|
|
// Compute relperms.
|
|
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
|
assert(np == 2);
|
|
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
|
|
|
// Compute relperms for wells. This must be revisited for crossflow.
|
|
DataBlock well_s(nperf, np);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double* comp_frac = &wells_.comp_frac[np*w];
|
|
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
|
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
|
}
|
|
}
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
|
|
|
// Compute well pressure differentials.
|
|
// Construct pressure difference vector for wells.
|
|
const double* g = geo_.gravity();
|
|
if (g) {
|
|
// Guard against gravity in anything but last dimension.
|
|
for (int dd = 0; dd < dim - 1; ++dd) {
|
|
assert(g[dd] == 0.0);
|
|
}
|
|
}
|
|
V cell_rho_total = V::Zero(nc,1);
|
|
const Eigen::Map<const V> p(state.pressure().data(), nc, 1);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const V cell_rho = fluidRho(phase, p, cells);
|
|
const V cell_s = s.col(phase);
|
|
cell_rho_total += cell_s * cell_rho;
|
|
}
|
|
V rho_perf = subset(cell_rho_total, well_cells);
|
|
well_perf_dp_ = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::assemble(const double dt,
|
|
const BlackoilState& state,
|
|
const WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const V& pv = geo_.poreVolume();
|
|
const int nc = numCells(grid_); ;
|
|
const int np = state.numPhases();
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
|
|
const std::vector<int> cells = buildAllCells(nc);
|
|
|
|
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
|
|
const DataBlock qall = DataBlock::Zero(nc, np);
|
|
const V delta_t = dt * V::Ones(nc, 1);
|
|
const V transi = subset(geo_.transmissibility(),
|
|
ops_.internal_faces);
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
|
|
|
// Initialize AD variables: p (cell pressures) and bhp (well bhp).
|
|
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
std::vector<V> vars0 = { p0, bhp0 };
|
|
std::vector<ADB> vars = ADB::variables(vars0);
|
|
const ADB& p = vars[0];
|
|
const ADB& bhp = vars[1];
|
|
std::vector<int> bpat = p.blockPattern();
|
|
|
|
// Compute T_ij * (p_i - p_j).
|
|
const ADB nkgradp = transi * (ops_.ngrad * p);
|
|
|
|
// Extract variables for perforation cell pressures
|
|
// and corresponding perforation well pressures.
|
|
const ADB p_perfcell = subset(p, well_cells);
|
|
// Construct matrix to map wells->perforations.
|
|
M well_to_perf(well_cells.size(), nw);
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> w2p;
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
|
w2p.emplace_back(perf, w, 1.0);
|
|
}
|
|
}
|
|
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
|
const M perf_to_well = well_to_perf.transpose();
|
|
// Finally construct well perforation pressures and well flows.
|
|
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp_;
|
|
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
|
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
|
|
|
cell_residual_ = ADB::constant(pv, bpat);
|
|
well_residual_ = ADB::constant(V::Zero(nw,1), bpat);
|
|
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
|
|
qs_ = ADB::constant(V::Zero(nw*np, 1), bpat);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const ADB cell_b = fluidFvf(phase, p, cells);
|
|
const ADB cell_rho = fluidRho(phase, p, cells);
|
|
const ADB well_b = fluidFvf(phase, p_perfwell, well_cells);
|
|
const V kr = fluidKr(phase);
|
|
// Explicitly not asking for derivatives of viscosity,
|
|
// since they are not available yet.
|
|
const V mu = fluidMu(phase, p.value(), cells);
|
|
const V cell_mob = kr / mu;
|
|
const ADB head_diff_grav = (grav_ * cell_rho);
|
|
const ADB head = nkgradp + (grav_ * cell_rho);
|
|
const UpwindSelector<double> upwind(grid_, ops_, head.value());
|
|
const V face_mob = upwind.select(cell_mob);
|
|
const V well_kr = fluidKrWell(phase);
|
|
const V well_mu = fluidMu(phase, p_perfwell.value(), well_cells);
|
|
const V well_mob = well_kr / well_mu;
|
|
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
|
const ADB flux = face_mob * head;
|
|
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
|
const ADB face_b = upwind.select(cell_b);
|
|
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
|
|
const V z0 = z0all.block(0, phase, nc, 1);
|
|
const V q = qall .block(0, phase, nc, 1);
|
|
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
|
|
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b) + well_contrib);
|
|
const V qcontrib = delta_t * q;
|
|
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
|
|
const ADB component_contrib = pvcontrib + qcontrib;
|
|
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
|
|
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
|
|
const ADB well_rates = perf_to_well * (perf_flux*perf_b);
|
|
qs_ = qs_ + superset(well_rates, Span(nw, 1, phase*nw), nw*np);
|
|
}
|
|
cell_residual_ = cell_residual_ + divcontrib_sum;
|
|
// Handling BHP and SURFACE_RATE wells.
|
|
V bhp_targets(nw,1);
|
|
V rate_targets(nw,1);
|
|
M rate_distr(nw, np*nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells_.ctrls[w];
|
|
if (well_controls_get_current_type(wc) == BHP) {
|
|
bhp_targets[w] = well_controls_get_current_target( wc );
|
|
rate_targets[w] = -1e100;
|
|
} else if (well_controls_get_current_type(wc) == SURFACE_RATE) {
|
|
bhp_targets[w] = -1e100;
|
|
rate_targets[w] = well_controls_get_current_target( wc );
|
|
{
|
|
const double * distr = well_controls_get_current_distr( wc );
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
rate_distr.insert(w, phase*nw + w) = distr[phase];
|
|
}
|
|
}
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Can only handle BHP and SURFACE_RATE type controls.");
|
|
}
|
|
}
|
|
const ADB bhp_residual = bhp - bhp_targets;
|
|
const ADB rate_residual = rate_distr * qs_ - rate_targets;
|
|
// Choose bhp residual for positive bhp targets.
|
|
Selector<double> bhp_selector(bhp_targets);
|
|
well_residual_ = bhp_selector.select(bhp_residual, rate_residual);
|
|
|
|
// Build full residual by concatenation of residual arrays and
|
|
// jacobian matrices.
|
|
total_residual_ = collapseJacs(vertcat(cell_residual_, well_residual_));
|
|
|
|
// std::cout.precision(16);
|
|
// std::cout << total_residual_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::solveJacobianSystem(BlackoilState& state,
|
|
WellState& well_state) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int nw = wells_.number_of_wells;
|
|
// const int np = state.numPhases();
|
|
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual_.derivative()[0];
|
|
|
|
V dx(V::Zero(total_residual_.size()));
|
|
Opm::LinearSolverInterface::LinearSolverReport rep
|
|
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
|
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
|
total_residual_.value().data(), dx.data());
|
|
if (!rep.converged) {
|
|
OPM_THROW(std::runtime_error, "ImpesTPFAAD::solve(): Linear solver convergence failure.");
|
|
}
|
|
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V dp = subset(dx, Span(nc));
|
|
const V p = p0 - dp;
|
|
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
|
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
Span bhp_dofs(nw, 1, nc);
|
|
const V dbhp = subset(dx, bhp_dofs);
|
|
const V bhp = bhp0 - dbhp;
|
|
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double
|
|
ImpesTPFAAD::residualNorm() const
|
|
{
|
|
return total_residual_.value().matrix().norm();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::computeFluxes(BlackoilState& state,
|
|
WellState& well_state) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
// This method computes state.faceflux(),
|
|
// well_state.perfRates() and well_state.perfPress().
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
|
|
// Build cell sets.
|
|
const std::vector<int> cells = buildAllCells(nc);
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
// Construct matrix to map wells->perforations.
|
|
M well_to_perf(well_cells.size(), nw);
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> w2p;
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
|
w2p.emplace_back(perf, w, 1.0);
|
|
}
|
|
}
|
|
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
|
const M perf_to_well = well_to_perf.transpose();
|
|
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
|
|
|
const V p = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V bhp = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
|
|
const V p_perfcell = subset(p, well_cells);
|
|
|
|
const V transi = subset(geo_.transmissibility(),
|
|
ops_.internal_faces);
|
|
const V nkgradp = transi * (ops_.ngrad * p.matrix()).array();
|
|
|
|
const V p_perfwell = (well_to_perf*bhp.matrix()).array() + well_perf_dp_;
|
|
const V nkgradp_well = transw * (p_perfcell - p_perfwell);
|
|
const Selector<double> cell_to_well_selector(nkgradp_well);
|
|
|
|
V flux = V::Zero(ops_.internal_faces.size(), 1);
|
|
V perf_flux = V::Zero(nperf, 1);
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const V cell_rho = fluidRho(phase, p, cells);
|
|
const V head = nkgradp + (grav_ * cell_rho.matrix()).array();
|
|
const UpwindSelector<double> upwind(grid_, ops_, head);
|
|
const V kr = fluidKr(phase);
|
|
const V mu = fluidMu(phase, p, cells);
|
|
const V cell_mob = kr / mu;
|
|
const V face_mob = upwind.select(cell_mob);
|
|
const V well_kr = fluidKrWell(phase);
|
|
const V well_mu = fluidMu(phase, p_perfwell, well_cells);
|
|
const V well_mob = well_kr / well_mu;
|
|
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
|
|
|
perf_flux += perf_mob * (nkgradp_well); // No gravity term for perforations.
|
|
flux += face_mob * head;
|
|
}
|
|
|
|
V all_flux = superset(flux, ops_.internal_faces, numFaces(grid_));
|
|
std::copy(all_flux.data(), all_flux.data() + numFaces(grid_), state.faceflux().begin());
|
|
|
|
perf_flux = -perf_flux; // well_state.perfRates() assumed to be inflows.
|
|
std::copy(perf_flux.data(), perf_flux.data() + nperf, well_state.perfRates().begin());
|
|
|
|
std::copy(p_perfwell.data(), p_perfwell.data() + nperf, well_state.perfPress().begin());
|
|
std::copy(qs_.value().data(), qs_.value().data() + np*nw, &well_state.wellRates()[0]);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidMu(const int phase, const V& p, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.muWat(p, cells);
|
|
case Oil: {
|
|
V dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.muOil(p, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.muGas(p, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB ImpesTPFAAD::fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.muWat(p, cells);
|
|
case Oil: {
|
|
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.muOil(p, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.muGas(p, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidFvf(const int phase, const V& p, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.bWat(p, cells);
|
|
case Oil: {
|
|
V dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.bOil(p, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.bGas(p, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB ImpesTPFAAD::fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.bWat(p, cells);
|
|
case Oil: {
|
|
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.bOil(p, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.bGas(p, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidRho(const int phase, const V& p, const std::vector<int>& cells) const
|
|
{
|
|
const double* rhos = fluid_.surfaceDensity();
|
|
V b = fluidFvf(phase, p, cells);
|
|
V rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB ImpesTPFAAD::fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const
|
|
{
|
|
const double* rhos = fluid_.surfaceDensity();
|
|
ADB b = fluidFvf(phase, p, cells);
|
|
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidKr(const int phase) const
|
|
{
|
|
return kr_[phase];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidKrWell(const int phase) const
|
|
{
|
|
return well_kr_[phase];
|
|
}
|
|
|
|
} // namespace Opm
|
|
|