opm-simulators/opm/models/discretization/common/tpfalinearizer.hh

859 lines
33 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseLinearizer
*/
#ifndef TPFA_LINEARIZER_HH
#define TPFA_LINEARIZER_HH
#include "fvbaseproperties.hh"
#include "linearizationtype.hh"
#include <opm/common/Exceptions.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/grid/utility/SparseTable.hpp>
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
#include <opm/input/eclipse/Schedule/BCProp.hpp>
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <type_traits>
#include <iostream>
#include <vector>
#include <thread>
#include <set>
#include <exception> // current_exception, rethrow_exception
#include <mutex>
#include <numeric>
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct SeparateSparseSourceTerms {
using type = bool;
static constexpr type value = false;
};
}
namespace Opm {
// forward declarations
template<class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief The common code for the linearizers of non-linear systems of equations
*
* This class assumes that these system of equations to be linearized are stemming from
* models that use an finite volume scheme for spatial discretization and an Euler
* scheme for time discretization.
*/
template<class TypeTag>
class TpfaLinearizer
{
//! \cond SKIP_THIS
using Model = GetPropType<TypeTag, Properties::Model>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementIterator = typename GridView::template Codim<0>::Iterator;
using Vector = GlobalEqVector;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
enum { dimWorld = GridView::dimensionworld };
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
static const bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
static const bool enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>();
// copying the linearizer is not a good idea
TpfaLinearizer(const TpfaLinearizer&);
//! \endcond
public:
TpfaLinearizer()
: jacobian_()
{
simulatorPtr_ = 0;
separateSparseSourceTerms_ = EWOMS_GET_PARAM(TypeTag, bool, SeparateSparseSourceTerms);
}
~TpfaLinearizer()
{
}
/*!
* \brief Register all run-time parameters for the Jacobian linearizer.
*/
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, bool, SeparateSparseSourceTerms,
"Treat well source terms all in one go, instead of on a cell by cell basis.");
}
/*!
* \brief Initialize the linearizer.
*
* At this point we can assume that all objects in the simulator
* have been allocated. We cannot assume that they are fully
* initialized, though.
*
* \copydetails Doxygen::simulatorParam
*/
void init(Simulator& simulator)
{
simulatorPtr_ = &simulator;
eraseMatrix();
}
/*!
* \brief Causes the Jacobian matrix to be recreated from scratch before the next
* iteration.
*
* This method is usally called if the sparsity pattern has changed for some
* reason. (e.g. by modifications of the grid or changes of the auxiliary equations.)
*/
void eraseMatrix()
{
jacobian_.reset();
}
/*!
* \brief Linearize the full system of non-linear equations.
*
* The linearizationType() controls the scheme used and the focus
* time index. The default is fully implicit scheme, and focus index
* equal to 0, i.e. current time (end of step).
*
* This linearizes the spatial domain and all auxiliary equations.
*/
void linearize()
{
linearizeDomain();
linearizeAuxiliaryEquations();
}
/*!
* \brief Linearize the part of the non-linear system of equations that is associated
* with the spatial domain.
*
* That means that the global Jacobian of the residual is assembled and the residual
* is evaluated for the current solution.
*
* The current state of affairs (esp. the previous and the current solutions) is
* represented by the model object.
*/
void linearizeDomain()
{
int succeeded;
try {
linearizeDomain(fullDomain_);
succeeded = 1;
}
catch (const std::exception& e)
{
std::cout << "rank " << simulator_().gridView().comm().rank()
<< " caught an exception while linearizing:" << e.what()
<< "\n" << std::flush;
succeeded = 0;
}
catch (...)
{
std::cout << "rank " << simulator_().gridView().comm().rank()
<< " caught an exception while linearizing"
<< "\n" << std::flush;
succeeded = 0;
}
succeeded = simulator_().gridView().comm().min(succeeded);
if (!succeeded)
throw NumericalProblem("A process did not succeed in linearizing the system");
}
/*!
* \brief Linearize the part of the non-linear system of equations that is associated
* with a part of the spatial domain.
*
* That means that the Jacobian of the residual is assembled and the residual
* is evaluated for the current solution, on the domain passed in as argument.
*
* The current state of affairs (esp. the previous and the current solutions) is
* represented by the model object.
*/
template <class SubDomainType>
void linearizeDomain(const SubDomainType& domain)
{
OPM_TIMEBLOCK(linearizeDomain);
// we defer the initialization of the Jacobian matrix until here because the
// auxiliary modules usually assume the problem, model and grid to be fully
// initialized...
if (!jacobian_)
initFirstIteration_();
// Called here because it is no longer called from linearize_().
if (domain.cells.size() == model_().numTotalDof()) {
// We are on the full domain.
resetSystem_();
} else {
resetSystem_(domain);
}
linearize_(domain);
}
void finalize()
{ jacobian_->finalize(); }
/*!
* \brief Linearize the part of the non-linear system of equations that is associated
* with the spatial domain.
*/
void linearizeAuxiliaryEquations()
{
OPM_TIMEBLOCK(linearizeAuxilaryEquations);
// flush possible local caches into matrix structure
jacobian_->commit();
auto& model = model_();
const auto& comm = simulator_().gridView().comm();
for (unsigned auxModIdx = 0; auxModIdx < model.numAuxiliaryModules(); ++auxModIdx) {
bool succeeded = true;
try {
model.auxiliaryModule(auxModIdx)->linearize(*jacobian_, residual_);
}
catch (const std::exception& e) {
succeeded = false;
std::cout << "rank " << simulator_().gridView().comm().rank()
<< " caught an exception while linearizing:" << e.what()
<< "\n" << std::flush;
}
succeeded = comm.min(succeeded);
if (!succeeded)
throw NumericalProblem("linearization of an auxiliary equation failed");
}
}
/*!
* \brief Return constant reference to global Jacobian matrix backend.
*/
const SparseMatrixAdapter& jacobian() const
{ return *jacobian_; }
SparseMatrixAdapter& jacobian()
{ return *jacobian_; }
/*!
* \brief Return constant reference to global residual vector.
*/
const GlobalEqVector& residual() const
{ return residual_; }
GlobalEqVector& residual()
{ return residual_; }
void setLinearizationType(LinearizationType linearizationType){
linearizationType_ = linearizationType;
};
const LinearizationType& getLinearizationType() const{
return linearizationType_;
};
/*!
* \brief Return constant reference to the flowsInfo.
*
* (This object is only non-empty if the FLOWS keyword is true.)
*/
const auto& getFlowsInfo() const{
return flowsInfo_;
}
/*!
* \brief Return constant reference to the floresInfo.
*
* (This object is only non-empty if the FLORES keyword is true.)
*/
const auto& getFloresInfo() const{
return floresInfo_;
}
void updateDiscretizationParameters()
{
updateStoredTransmissibilities();
}
void updateBoundaryConditionData() {
for (auto& bdyInfo : boundaryInfo_) {
const auto [type, massrateAD] = problem_().boundaryCondition(bdyInfo.cell, bdyInfo.dir);
// Strip the unnecessary (and zero anyway) derivatives off massrate.
VectorBlock massrate(0.0);
for (size_t ii = 0; ii < massrate.size(); ++ii) {
massrate[ii] = massrateAD[ii].value();
}
if (type != BCType::NONE) {
const auto& exFluidState = problem_().boundaryFluidState(bdyInfo.cell, bdyInfo.dir);
bdyInfo.bcdata.type = type;
bdyInfo.bcdata.massRate = massrate;
bdyInfo.bcdata.exFluidState = exFluidState;
}
}
}
/*!
* \brief Returns the map of constraint degrees of freedom.
*
* (This object is only non-empty if the EnableConstraints property is true.)
*/
const std::map<unsigned, Constraints> constraintsMap() const
{ return {}; }
template <class SubDomainType>
void resetSystem_(const SubDomainType& domain)
{
if (!jacobian_) {
initFirstIteration_();
}
for (int globI : domain.cells) {
residual_[globI] = 0.0;
jacobian_->clearRow(globI, 0.0);
}
}
private:
Simulator& simulator_()
{ return *simulatorPtr_; }
const Simulator& simulator_() const
{ return *simulatorPtr_; }
Problem& problem_()
{ return simulator_().problem(); }
const Problem& problem_() const
{ return simulator_().problem(); }
Model& model_()
{ return simulator_().model(); }
const Model& model_() const
{ return simulator_().model(); }
const GridView& gridView_() const
{ return problem_().gridView(); }
void initFirstIteration_()
{
// initialize the BCRS matrix for the Jacobian of the residual function
createMatrix_();
// initialize the Jacobian matrix and the vector for the residual function
residual_.resize(model_().numTotalDof());
resetSystem_();
// initialize the sparse tables for Flows and Flores
createFlows_();
}
// Construct the BCRS matrix for the Jacobian of the residual function
void createMatrix_()
{
OPM_TIMEBLOCK(createMatrix);
if (!neighborInfo_.empty()) {
// It is ok to call this function multiple times, but it
// should not do anything if already called.
return;
}
const auto& model = model_();
Stencil stencil(gridView_(), model_().dofMapper());
// for the main model, find out the global indices of the neighboring degrees of
// freedom of each primary degree of freedom
using NeighborSet = std::set< unsigned >;
std::vector<NeighborSet> sparsityPattern(model.numTotalDof());
const Scalar gravity = problem_().gravity()[dimWorld - 1];
unsigned numCells = model.numTotalDof();
neighborInfo_.reserve(numCells, 6 * numCells);
std::vector<NeighborInfo> loc_nbinfo;
const auto& materialLawManager = problem_().materialLawManager();
using FaceDirection = FaceDir::DirEnum;
for (const auto& elem : elements(gridView_())) {
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
loc_nbinfo.resize(stencil.numDof() - 1); // Do not include the primary dof in neighborInfo_
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
sparsityPattern[myIdx].insert(neighborIdx);
if (dofIdx > 0) {
const Scalar trans = problem_().transmissibility(myIdx, neighborIdx);
const auto scvfIdx = dofIdx - 1;
const auto& scvf = stencil.interiorFace(scvfIdx);
const Scalar area = scvf.area();
const Scalar Vin = problem_().model().dofTotalVolume(myIdx);
const Scalar Vex = problem_().model().dofTotalVolume(neighborIdx);
const Scalar zIn = problem_().dofCenterDepth(myIdx);
const Scalar zEx = problem_().dofCenterDepth(neighborIdx);
const Scalar dZg = (zIn - zEx)*gravity;
const Scalar thpres = problem_().thresholdPressure(myIdx, neighborIdx);
Scalar inAlpha {0.};
Scalar outAlpha {0.};
FaceDirection dirId = FaceDirection::Unknown;
Scalar diffusivity {0.};
if constexpr(enableEnergy){
inAlpha = problem_().thermalHalfTransmissibility(myIdx, neighborIdx);
outAlpha = problem_().thermalHalfTransmissibility(neighborIdx, myIdx);
}
if constexpr(enableDiffusion){
diffusivity = problem_().diffusivity(myIdx, neighborIdx);
}
if (materialLawManager->hasDirectionalRelperms()) {
dirId = scvf.faceDirFromDirId();
}
loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, dirId, Vin, Vex, inAlpha, outAlpha, diffusivity}, nullptr};
}
}
neighborInfo_.appendRow(loc_nbinfo.begin(), loc_nbinfo.end());
for (unsigned bfIndex = 0; bfIndex < stencil.numBoundaryFaces(); ++bfIndex) {
const auto& bf = stencil.boundaryFace(bfIndex);
const int dir_id = bf.dirId();
const auto [type, massrateAD] = problem_().boundaryCondition(myIdx, dir_id);
// Strip the unnecessary (and zero anyway) derivatives off massrate.
VectorBlock massrate(0.0);
for (size_t ii = 0; ii < massrate.size(); ++ii) {
massrate[ii] = massrateAD[ii].value();
}
if (type != BCType::NONE) {
const auto& exFluidState = problem_().boundaryFluidState(myIdx, dir_id);
BoundaryConditionData bcdata{type,
massrate,
exFluidState.pvtRegionIndex(),
bfIndex,
bf.area(),
bf.integrationPos()[dimWorld - 1],
exFluidState};
boundaryInfo_.push_back({myIdx, dir_id, bcdata});
}
}
}
}
// add the additional neighbors and degrees of freedom caused by the auxiliary
// equations
size_t numAuxMod = model.numAuxiliaryModules();
for (unsigned auxModIdx = 0; auxModIdx < numAuxMod; ++auxModIdx)
model.auxiliaryModule(auxModIdx)->addNeighbors(sparsityPattern);
// allocate raw matrix
jacobian_.reset(new SparseMatrixAdapter(simulator_()));
diagMatAddress_.resize(numCells);
// create matrix structure based on sparsity pattern
jacobian_->reserve(sparsityPattern);
for (unsigned globI = 0; globI < numCells; globI++) {
const auto& nbInfos = neighborInfo_[globI];
diagMatAddress_[globI] = jacobian_->blockAddress(globI, globI);
for (auto& nbInfo : nbInfos) {
nbInfo.matBlockAddress = jacobian_->blockAddress(nbInfo.neighbor, globI);
}
}
// Create dummy full domain.
fullDomain_.cells.resize(numCells);
std::iota(fullDomain_.cells.begin(), fullDomain_.cells.end(), 0);
}
// reset the global linear system of equations.
void resetSystem_()
{
residual_ = 0.0;
// zero all matrix entries
jacobian_->clear();
}
// Initialize the flows and flores sparse tables
void createFlows_()
{
OPM_TIMEBLOCK(createFlows);
// If FLOWS/FLORES is set in any RPTRST in the schedule, then we initializate the sparse tables
// For now, do the same also if any block flows are requested (TODO: only save requested cells...)
const bool anyFlows = simulator_().problem().eclWriter()->eclOutputModule().anyFlows();
const bool anyFlores = simulator_().problem().eclWriter()->eclOutputModule().anyFlores();
if ((!anyFlows || !flowsInfo_.empty()) && (!anyFlores || !floresInfo_.empty())) {
return;
}
const auto& model = model_();
const auto& nncOutput = simulator_().problem().eclWriter()->getOutputNnc();
Stencil stencil(gridView_(), model_().dofMapper());
unsigned numCells = model.numTotalDof();
std::unordered_multimap<int, std::pair<int, int>> nncIndices;
std::vector<FlowInfo> loc_flinfo;
unsigned int nncId = 0;
VectorBlock flow(0.0);
// Create a nnc structure to use fast lookup
for (unsigned int nncIdx = 0; nncIdx < nncOutput.size(); ++nncIdx) {
const int ci1 = nncOutput[nncIdx].cell1;
const int ci2 = nncOutput[nncIdx].cell2;
nncIndices.emplace(ci1, std::make_pair(ci2, nncIdx));
}
if (anyFlows) {
flowsInfo_.reserve(numCells, 6 * numCells);
}
if (anyFlores) {
floresInfo_.reserve(numCells, 6 * numCells);
}
for (const auto& elem : elements(gridView_())) {
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
loc_flinfo.resize(stencil.numDof() - 1);
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
if (dofIdx > 0) {
const auto scvfIdx = dofIdx - 1;
const auto& scvf = stencil.interiorFace(scvfIdx);
int faceId = scvf.dirId();
const int cartMyIdx = simulator_().vanguard().cartesianIndex(myIdx);
const int cartNeighborIdx = simulator_().vanguard().cartesianIndex(neighborIdx);
const auto& range = nncIndices.equal_range(cartMyIdx);
for (auto it = range.first; it != range.second; ++it) {
if (it->second.first == cartNeighborIdx){
// -1 gives problem since is used for the nncInput from the deck
faceId = -2;
// the index is stored to be used for writting the outputs
nncId = it->second.second;
}
}
loc_flinfo[dofIdx - 1] = FlowInfo{faceId, flow, nncId};
}
}
if (anyFlows) {
flowsInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
}
if (anyFlores) {
floresInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
}
}
}
}
public:
void setResAndJacobi(VectorBlock& res, MatrixBlock& bMat, const ADVectorBlock& resid) const
{
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
res[eqIdx] = resid[eqIdx].value();
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
// with regard to the focus variable 'pvIdx' of the degree of freedom
// 'focusDofIdx'
bMat[eqIdx][pvIdx] = resid[eqIdx].derivative(pvIdx);
}
}
}
private:
template <class SubDomainType>
void linearize_(const SubDomainType& domain)
{
// This check should be removed once this is addressed by
// for example storing the previous timesteps' values for
// rsmax (for DRSDT) and similar.
if (!problem_().recycleFirstIterationStorage()) {
if (!model_().storeIntensiveQuantities() && !model_().enableStorageCache()) {
OPM_THROW(std::runtime_error, "Must have cached either IQs or storage when we cannot recycle.");
}
}
OPM_TIMEBLOCK(linearize);
// We do not call resetSystem_() here, since that will set
// the full system to zero, not just our part.
// Instead, that must be called before starting the linearization.
const bool& enableFlows = simulator_().problem().eclWriter()->eclOutputModule().hasFlows() ||
simulator_().problem().eclWriter()->eclOutputModule().hasBlockFlows();
const bool& enableFlores = simulator_().problem().eclWriter()->eclOutputModule().hasFlores();
const unsigned int numCells = domain.cells.size();
const bool on_full_domain = (numCells == model_().numTotalDof());
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned ii = 0; ii < numCells; ++ii) {
OPM_TIMEBLOCK_LOCAL(linearizationForEachCell);
const unsigned globI = domain.cells[ii];
const auto& nbInfos = neighborInfo_[globI];
VectorBlock res(0.0);
MatrixBlock bMat(0.0);
ADVectorBlock adres(0.0);
ADVectorBlock darcyFlux(0.0);
const IntensiveQuantities& intQuantsIn = model_().intensiveQuantities(globI, /*timeIdx*/ 0);
// Flux term.
{
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachCell);
short loc = 0;
for (const auto& nbInfo : nbInfos) {
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachFace);
unsigned globJ = nbInfo.neighbor;
assert(globJ != globI);
res = 0.0;
bMat = 0.0;
adres = 0.0;
darcyFlux = 0.0;
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
adres *= nbInfo.res_nbinfo.faceArea;
if (enableFlows) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
flowsInfo_[globI][loc].flow[phaseIdx] = adres[phaseIdx].value();
}
}
if (enableFlores) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
floresInfo_[globI][loc].flow[phaseIdx] = darcyFlux[phaseIdx].value();
}
}
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
bMat *= -1.0;
//SparseAdapter syntax: jacobian_->addToBlock(globJ, globI, bMat);
*nbInfo.matBlockAddress += bMat;
++loc;
}
}
// Accumulation term.
double dt = simulator_().timeStepSize();
double volume = model_().dofTotalVolume(globI);
Scalar storefac = volume / dt;
adres = 0.0;
{
OPM_TIMEBLOCK_LOCAL(computeStorage);
LocalResidual::computeStorage(adres, intQuantsIn);
}
setResAndJacobi(res, bMat, adres);
// Either use cached storage term, or compute it on the fly.
if (model_().enableStorageCache()) {
// The cached storage for timeIdx 0 (current time) is not
// used, but after storage cache is shifted at the end of the
// timestep, it will become cached storage for timeIdx 1.
model_().updateCachedStorage(globI, /*timeIdx=*/0, res);
if (model_().newtonMethod().numIterations() == 0) {
// Need to update the storage cache.
if (problem_().recycleFirstIterationStorage()) {
// Assumes nothing have changed in the system which
// affects masses calculated from primary variables.
if (on_full_domain) {
// This is to avoid resetting the start-of-step storage
// to incorrect numbers when we do local solves, where the iteration
// number will start from 0, but the starting state may not be identical
// to the start-of-step state.
// Note that a full assembly must be done before local solves
// otherwise this will be left un-updated.
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
}
} else {
Dune::FieldVector<Scalar, numEq> tmp;
IntensiveQuantities intQuantOld = model_().intensiveQuantities(globI, 1);
LocalResidual::computeStorage(tmp, intQuantOld);
model_().updateCachedStorage(globI, /*timeIdx=*/1, tmp);
}
}
res -= model_().cachedStorage(globI, 1);
} else {
OPM_TIMEBLOCK_LOCAL(computeStorage0);
Dune::FieldVector<Scalar, numEq> tmp;
IntensiveQuantities intQuantOld = model_().intensiveQuantities(globI, 1);
LocalResidual::computeStorage(tmp, intQuantOld);
// assume volume do not change
res -= tmp;
}
res *= storefac;
bMat *= storefac;
residual_[globI] += res;
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
// Cell-wise source terms.
// This will include well sources if SeparateSparseSourceTerms is false.
res = 0.0;
bMat = 0.0;
adres = 0.0;
if (separateSparseSourceTerms_) {
LocalResidual::computeSourceDense(adres, problem_(), globI, 0);
} else {
LocalResidual::computeSource(adres, problem_(), globI, 0);
}
adres *= -volume;
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
} // end of loop for cell globI.
// Add sparse source terms. For now only wells.
if (separateSparseSourceTerms_) {
problem_().wellModel().addReservoirSourceTerms(residual_, diagMatAddress_);
}
// Boundary terms. Only looping over cells with nontrivial bcs.
for (const auto& bdyInfo : boundaryInfo_) {
VectorBlock res(0.0);
MatrixBlock bMat(0.0);
ADVectorBlock adres(0.0);
const unsigned globI = bdyInfo.cell;
const IntensiveQuantities* insideIntQuants = model_().cachedIntensiveQuantities(globI, /*timeIdx*/ 0);
if (insideIntQuants == nullptr) {
throw std::logic_error("Missing updated intensive quantities for cell " + std::to_string(globI));
}
LocalResidual::computeBoundaryFlux(adres, problem_(), bdyInfo.bcdata, *insideIntQuants, globI);
adres *= bdyInfo.bcdata.faceArea;
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
////SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
}
}
void updateStoredTransmissibilities()
{
if (neighborInfo_.empty()) {
// This function was called before createMatrix_() was called.
// We call initFirstIteration_(), not createMatrix_(), because
// that will also initialize the residual consistently.
initFirstIteration_();
}
unsigned numCells = model_().numTotalDof();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned globI = 0; globI < numCells; globI++) {
auto nbInfos = neighborInfo_[globI]; // nbInfos will be a SparseTable<...>::mutable_iterator_range.
for (auto& nbInfo : nbInfos) {
unsigned globJ = nbInfo.neighbor;
nbInfo.res_nbinfo.trans = problem_().transmissibility(globI, globJ);
}
}
}
Simulator *simulatorPtr_;
// the jacobian matrix
std::unique_ptr<SparseMatrixAdapter> jacobian_;
// the right-hand side
GlobalEqVector residual_;
LinearizationType linearizationType_;
using ResidualNBInfo = typename LocalResidual::ResidualNBInfo;
struct NeighborInfo
{
unsigned int neighbor;
ResidualNBInfo res_nbinfo;
MatrixBlock* matBlockAddress;
};
SparseTable<NeighborInfo> neighborInfo_;
std::vector<MatrixBlock*> diagMatAddress_;
struct FlowInfo
{
int faceId;
VectorBlock flow;
unsigned int nncId;
};
SparseTable<FlowInfo> flowsInfo_;
SparseTable<FlowInfo> floresInfo_;
using ScalarFluidState = typename IntensiveQuantities::ScalarFluidState;
struct BoundaryConditionData
{
BCType type;
VectorBlock massRate;
unsigned pvtRegionIdx;
unsigned boundaryFaceIndex;
double faceArea;
double faceZCoord;
ScalarFluidState exFluidState;
};
struct BoundaryInfo
{
unsigned int cell;
int dir;
BoundaryConditionData bcdata;
};
std::vector<BoundaryInfo> boundaryInfo_;
bool separateSparseSourceTerms_ = false;
struct FullDomain
{
std::vector<int> cells;
std::vector<bool> interior;
};
FullDomain fullDomain_;
};
} // namespace Opm
#endif // TPFA_LINEARIZER