mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-02 05:49:09 -06:00
859 lines
33 KiB
C++
859 lines
33 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::FvBaseLinearizer
|
|
*/
|
|
#ifndef TPFA_LINEARIZER_HH
|
|
#define TPFA_LINEARIZER_HH
|
|
|
|
#include "fvbaseproperties.hh"
|
|
#include "linearizationtype.hh"
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/TimingMacros.hpp>
|
|
|
|
#include <opm/grid/utility/SparseTable.hpp>
|
|
|
|
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
|
|
#include <opm/input/eclipse/Schedule/BCProp.hpp>
|
|
|
|
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <type_traits>
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <set>
|
|
#include <exception> // current_exception, rethrow_exception
|
|
#include <mutex>
|
|
#include <numeric>
|
|
|
|
namespace Opm::Properties {
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct SeparateSparseSourceTerms {
|
|
using type = bool;
|
|
static constexpr type value = false;
|
|
};
|
|
}
|
|
|
|
namespace Opm {
|
|
|
|
// forward declarations
|
|
template<class TypeTag>
|
|
class EcfvDiscretization;
|
|
|
|
/*!
|
|
* \ingroup FiniteVolumeDiscretizations
|
|
*
|
|
* \brief The common code for the linearizers of non-linear systems of equations
|
|
*
|
|
* This class assumes that these system of equations to be linearized are stemming from
|
|
* models that use an finite volume scheme for spatial discretization and an Euler
|
|
* scheme for time discretization.
|
|
*/
|
|
template<class TypeTag>
|
|
class TpfaLinearizer
|
|
{
|
|
//! \cond SKIP_THIS
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
|
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
|
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
|
|
using Element = typename GridView::template Codim<0>::Entity;
|
|
using ElementIterator = typename GridView::template Codim<0>::Iterator;
|
|
|
|
using Vector = GlobalEqVector;
|
|
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
|
|
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
|
|
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
|
|
|
|
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
|
|
static const bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
|
|
static const bool enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>();
|
|
// copying the linearizer is not a good idea
|
|
TpfaLinearizer(const TpfaLinearizer&);
|
|
//! \endcond
|
|
|
|
public:
|
|
TpfaLinearizer()
|
|
: jacobian_()
|
|
{
|
|
simulatorPtr_ = 0;
|
|
separateSparseSourceTerms_ = EWOMS_GET_PARAM(TypeTag, bool, SeparateSparseSourceTerms);
|
|
}
|
|
|
|
~TpfaLinearizer()
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the Jacobian linearizer.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
EWOMS_REGISTER_PARAM(TypeTag, bool, SeparateSparseSourceTerms,
|
|
"Treat well source terms all in one go, instead of on a cell by cell basis.");
|
|
}
|
|
|
|
/*!
|
|
* \brief Initialize the linearizer.
|
|
*
|
|
* At this point we can assume that all objects in the simulator
|
|
* have been allocated. We cannot assume that they are fully
|
|
* initialized, though.
|
|
*
|
|
* \copydetails Doxygen::simulatorParam
|
|
*/
|
|
void init(Simulator& simulator)
|
|
{
|
|
simulatorPtr_ = &simulator;
|
|
eraseMatrix();
|
|
}
|
|
|
|
/*!
|
|
* \brief Causes the Jacobian matrix to be recreated from scratch before the next
|
|
* iteration.
|
|
*
|
|
* This method is usally called if the sparsity pattern has changed for some
|
|
* reason. (e.g. by modifications of the grid or changes of the auxiliary equations.)
|
|
*/
|
|
void eraseMatrix()
|
|
{
|
|
jacobian_.reset();
|
|
}
|
|
|
|
/*!
|
|
* \brief Linearize the full system of non-linear equations.
|
|
*
|
|
* The linearizationType() controls the scheme used and the focus
|
|
* time index. The default is fully implicit scheme, and focus index
|
|
* equal to 0, i.e. current time (end of step).
|
|
*
|
|
* This linearizes the spatial domain and all auxiliary equations.
|
|
*/
|
|
void linearize()
|
|
{
|
|
linearizeDomain();
|
|
linearizeAuxiliaryEquations();
|
|
}
|
|
|
|
/*!
|
|
* \brief Linearize the part of the non-linear system of equations that is associated
|
|
* with the spatial domain.
|
|
*
|
|
* That means that the global Jacobian of the residual is assembled and the residual
|
|
* is evaluated for the current solution.
|
|
*
|
|
* The current state of affairs (esp. the previous and the current solutions) is
|
|
* represented by the model object.
|
|
*/
|
|
void linearizeDomain()
|
|
{
|
|
int succeeded;
|
|
try {
|
|
linearizeDomain(fullDomain_);
|
|
succeeded = 1;
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
<< " caught an exception while linearizing:" << e.what()
|
|
<< "\n" << std::flush;
|
|
succeeded = 0;
|
|
}
|
|
catch (...)
|
|
{
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
<< " caught an exception while linearizing"
|
|
<< "\n" << std::flush;
|
|
succeeded = 0;
|
|
}
|
|
succeeded = simulator_().gridView().comm().min(succeeded);
|
|
|
|
if (!succeeded)
|
|
throw NumericalProblem("A process did not succeed in linearizing the system");
|
|
}
|
|
|
|
/*!
|
|
* \brief Linearize the part of the non-linear system of equations that is associated
|
|
* with a part of the spatial domain.
|
|
*
|
|
* That means that the Jacobian of the residual is assembled and the residual
|
|
* is evaluated for the current solution, on the domain passed in as argument.
|
|
*
|
|
* The current state of affairs (esp. the previous and the current solutions) is
|
|
* represented by the model object.
|
|
*/
|
|
template <class SubDomainType>
|
|
void linearizeDomain(const SubDomainType& domain)
|
|
{
|
|
OPM_TIMEBLOCK(linearizeDomain);
|
|
// we defer the initialization of the Jacobian matrix until here because the
|
|
// auxiliary modules usually assume the problem, model and grid to be fully
|
|
// initialized...
|
|
if (!jacobian_)
|
|
initFirstIteration_();
|
|
|
|
// Called here because it is no longer called from linearize_().
|
|
if (domain.cells.size() == model_().numTotalDof()) {
|
|
// We are on the full domain.
|
|
resetSystem_();
|
|
} else {
|
|
resetSystem_(domain);
|
|
}
|
|
|
|
linearize_(domain);
|
|
}
|
|
|
|
void finalize()
|
|
{ jacobian_->finalize(); }
|
|
|
|
/*!
|
|
* \brief Linearize the part of the non-linear system of equations that is associated
|
|
* with the spatial domain.
|
|
*/
|
|
void linearizeAuxiliaryEquations()
|
|
{
|
|
OPM_TIMEBLOCK(linearizeAuxilaryEquations);
|
|
// flush possible local caches into matrix structure
|
|
jacobian_->commit();
|
|
|
|
auto& model = model_();
|
|
const auto& comm = simulator_().gridView().comm();
|
|
for (unsigned auxModIdx = 0; auxModIdx < model.numAuxiliaryModules(); ++auxModIdx) {
|
|
bool succeeded = true;
|
|
try {
|
|
model.auxiliaryModule(auxModIdx)->linearize(*jacobian_, residual_);
|
|
}
|
|
catch (const std::exception& e) {
|
|
succeeded = false;
|
|
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
<< " caught an exception while linearizing:" << e.what()
|
|
<< "\n" << std::flush;
|
|
}
|
|
|
|
succeeded = comm.min(succeeded);
|
|
|
|
if (!succeeded)
|
|
throw NumericalProblem("linearization of an auxiliary equation failed");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Return constant reference to global Jacobian matrix backend.
|
|
*/
|
|
const SparseMatrixAdapter& jacobian() const
|
|
{ return *jacobian_; }
|
|
|
|
SparseMatrixAdapter& jacobian()
|
|
{ return *jacobian_; }
|
|
|
|
/*!
|
|
* \brief Return constant reference to global residual vector.
|
|
*/
|
|
const GlobalEqVector& residual() const
|
|
{ return residual_; }
|
|
|
|
GlobalEqVector& residual()
|
|
{ return residual_; }
|
|
|
|
void setLinearizationType(LinearizationType linearizationType){
|
|
linearizationType_ = linearizationType;
|
|
};
|
|
|
|
const LinearizationType& getLinearizationType() const{
|
|
return linearizationType_;
|
|
};
|
|
|
|
/*!
|
|
* \brief Return constant reference to the flowsInfo.
|
|
*
|
|
* (This object is only non-empty if the FLOWS keyword is true.)
|
|
*/
|
|
const auto& getFlowsInfo() const{
|
|
|
|
return flowsInfo_;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return constant reference to the floresInfo.
|
|
*
|
|
* (This object is only non-empty if the FLORES keyword is true.)
|
|
*/
|
|
const auto& getFloresInfo() const{
|
|
|
|
return floresInfo_;
|
|
}
|
|
|
|
void updateDiscretizationParameters()
|
|
{
|
|
updateStoredTransmissibilities();
|
|
}
|
|
|
|
void updateBoundaryConditionData() {
|
|
for (auto& bdyInfo : boundaryInfo_) {
|
|
const auto [type, massrateAD] = problem_().boundaryCondition(bdyInfo.cell, bdyInfo.dir);
|
|
|
|
// Strip the unnecessary (and zero anyway) derivatives off massrate.
|
|
VectorBlock massrate(0.0);
|
|
for (size_t ii = 0; ii < massrate.size(); ++ii) {
|
|
massrate[ii] = massrateAD[ii].value();
|
|
}
|
|
if (type != BCType::NONE) {
|
|
const auto& exFluidState = problem_().boundaryFluidState(bdyInfo.cell, bdyInfo.dir);
|
|
bdyInfo.bcdata.type = type;
|
|
bdyInfo.bcdata.massRate = massrate;
|
|
bdyInfo.bcdata.exFluidState = exFluidState;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the map of constraint degrees of freedom.
|
|
*
|
|
* (This object is only non-empty if the EnableConstraints property is true.)
|
|
*/
|
|
const std::map<unsigned, Constraints> constraintsMap() const
|
|
{ return {}; }
|
|
|
|
template <class SubDomainType>
|
|
void resetSystem_(const SubDomainType& domain)
|
|
{
|
|
if (!jacobian_) {
|
|
initFirstIteration_();
|
|
}
|
|
for (int globI : domain.cells) {
|
|
residual_[globI] = 0.0;
|
|
jacobian_->clearRow(globI, 0.0);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Simulator& simulator_()
|
|
{ return *simulatorPtr_; }
|
|
const Simulator& simulator_() const
|
|
{ return *simulatorPtr_; }
|
|
|
|
Problem& problem_()
|
|
{ return simulator_().problem(); }
|
|
const Problem& problem_() const
|
|
{ return simulator_().problem(); }
|
|
|
|
Model& model_()
|
|
{ return simulator_().model(); }
|
|
const Model& model_() const
|
|
{ return simulator_().model(); }
|
|
|
|
const GridView& gridView_() const
|
|
{ return problem_().gridView(); }
|
|
|
|
void initFirstIteration_()
|
|
{
|
|
// initialize the BCRS matrix for the Jacobian of the residual function
|
|
createMatrix_();
|
|
|
|
// initialize the Jacobian matrix and the vector for the residual function
|
|
residual_.resize(model_().numTotalDof());
|
|
resetSystem_();
|
|
|
|
// initialize the sparse tables for Flows and Flores
|
|
createFlows_();
|
|
}
|
|
|
|
// Construct the BCRS matrix for the Jacobian of the residual function
|
|
void createMatrix_()
|
|
{
|
|
OPM_TIMEBLOCK(createMatrix);
|
|
if (!neighborInfo_.empty()) {
|
|
// It is ok to call this function multiple times, but it
|
|
// should not do anything if already called.
|
|
return;
|
|
}
|
|
const auto& model = model_();
|
|
Stencil stencil(gridView_(), model_().dofMapper());
|
|
|
|
// for the main model, find out the global indices of the neighboring degrees of
|
|
// freedom of each primary degree of freedom
|
|
using NeighborSet = std::set< unsigned >;
|
|
std::vector<NeighborSet> sparsityPattern(model.numTotalDof());
|
|
const Scalar gravity = problem_().gravity()[dimWorld - 1];
|
|
unsigned numCells = model.numTotalDof();
|
|
neighborInfo_.reserve(numCells, 6 * numCells);
|
|
std::vector<NeighborInfo> loc_nbinfo;
|
|
const auto& materialLawManager = problem_().materialLawManager();
|
|
using FaceDirection = FaceDir::DirEnum;
|
|
for (const auto& elem : elements(gridView_())) {
|
|
stencil.update(elem);
|
|
|
|
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
|
|
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
|
|
loc_nbinfo.resize(stencil.numDof() - 1); // Do not include the primary dof in neighborInfo_
|
|
|
|
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
|
|
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
|
|
sparsityPattern[myIdx].insert(neighborIdx);
|
|
if (dofIdx > 0) {
|
|
const Scalar trans = problem_().transmissibility(myIdx, neighborIdx);
|
|
const auto scvfIdx = dofIdx - 1;
|
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
|
const Scalar area = scvf.area();
|
|
const Scalar Vin = problem_().model().dofTotalVolume(myIdx);
|
|
const Scalar Vex = problem_().model().dofTotalVolume(neighborIdx);
|
|
const Scalar zIn = problem_().dofCenterDepth(myIdx);
|
|
const Scalar zEx = problem_().dofCenterDepth(neighborIdx);
|
|
const Scalar dZg = (zIn - zEx)*gravity;
|
|
const Scalar thpres = problem_().thresholdPressure(myIdx, neighborIdx);
|
|
Scalar inAlpha {0.};
|
|
Scalar outAlpha {0.};
|
|
FaceDirection dirId = FaceDirection::Unknown;
|
|
Scalar diffusivity {0.};
|
|
if constexpr(enableEnergy){
|
|
inAlpha = problem_().thermalHalfTransmissibility(myIdx, neighborIdx);
|
|
outAlpha = problem_().thermalHalfTransmissibility(neighborIdx, myIdx);
|
|
}
|
|
if constexpr(enableDiffusion){
|
|
diffusivity = problem_().diffusivity(myIdx, neighborIdx);
|
|
}
|
|
if (materialLawManager->hasDirectionalRelperms()) {
|
|
dirId = scvf.faceDirFromDirId();
|
|
}
|
|
loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, dirId, Vin, Vex, inAlpha, outAlpha, diffusivity}, nullptr};
|
|
|
|
}
|
|
}
|
|
neighborInfo_.appendRow(loc_nbinfo.begin(), loc_nbinfo.end());
|
|
for (unsigned bfIndex = 0; bfIndex < stencil.numBoundaryFaces(); ++bfIndex) {
|
|
const auto& bf = stencil.boundaryFace(bfIndex);
|
|
const int dir_id = bf.dirId();
|
|
const auto [type, massrateAD] = problem_().boundaryCondition(myIdx, dir_id);
|
|
// Strip the unnecessary (and zero anyway) derivatives off massrate.
|
|
VectorBlock massrate(0.0);
|
|
for (size_t ii = 0; ii < massrate.size(); ++ii) {
|
|
massrate[ii] = massrateAD[ii].value();
|
|
}
|
|
if (type != BCType::NONE) {
|
|
const auto& exFluidState = problem_().boundaryFluidState(myIdx, dir_id);
|
|
BoundaryConditionData bcdata{type,
|
|
massrate,
|
|
exFluidState.pvtRegionIndex(),
|
|
bfIndex,
|
|
bf.area(),
|
|
bf.integrationPos()[dimWorld - 1],
|
|
exFluidState};
|
|
boundaryInfo_.push_back({myIdx, dir_id, bcdata});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// add the additional neighbors and degrees of freedom caused by the auxiliary
|
|
// equations
|
|
size_t numAuxMod = model.numAuxiliaryModules();
|
|
for (unsigned auxModIdx = 0; auxModIdx < numAuxMod; ++auxModIdx)
|
|
model.auxiliaryModule(auxModIdx)->addNeighbors(sparsityPattern);
|
|
|
|
// allocate raw matrix
|
|
jacobian_.reset(new SparseMatrixAdapter(simulator_()));
|
|
diagMatAddress_.resize(numCells);
|
|
// create matrix structure based on sparsity pattern
|
|
jacobian_->reserve(sparsityPattern);
|
|
for (unsigned globI = 0; globI < numCells; globI++) {
|
|
const auto& nbInfos = neighborInfo_[globI];
|
|
diagMatAddress_[globI] = jacobian_->blockAddress(globI, globI);
|
|
for (auto& nbInfo : nbInfos) {
|
|
nbInfo.matBlockAddress = jacobian_->blockAddress(nbInfo.neighbor, globI);
|
|
}
|
|
}
|
|
|
|
// Create dummy full domain.
|
|
fullDomain_.cells.resize(numCells);
|
|
std::iota(fullDomain_.cells.begin(), fullDomain_.cells.end(), 0);
|
|
}
|
|
|
|
// reset the global linear system of equations.
|
|
void resetSystem_()
|
|
{
|
|
residual_ = 0.0;
|
|
// zero all matrix entries
|
|
jacobian_->clear();
|
|
}
|
|
|
|
// Initialize the flows and flores sparse tables
|
|
void createFlows_()
|
|
{
|
|
OPM_TIMEBLOCK(createFlows);
|
|
// If FLOWS/FLORES is set in any RPTRST in the schedule, then we initializate the sparse tables
|
|
// For now, do the same also if any block flows are requested (TODO: only save requested cells...)
|
|
const bool anyFlows = simulator_().problem().eclWriter()->eclOutputModule().anyFlows();
|
|
const bool anyFlores = simulator_().problem().eclWriter()->eclOutputModule().anyFlores();
|
|
if ((!anyFlows || !flowsInfo_.empty()) && (!anyFlores || !floresInfo_.empty())) {
|
|
return;
|
|
}
|
|
const auto& model = model_();
|
|
const auto& nncOutput = simulator_().problem().eclWriter()->getOutputNnc();
|
|
Stencil stencil(gridView_(), model_().dofMapper());
|
|
unsigned numCells = model.numTotalDof();
|
|
std::unordered_multimap<int, std::pair<int, int>> nncIndices;
|
|
std::vector<FlowInfo> loc_flinfo;
|
|
unsigned int nncId = 0;
|
|
VectorBlock flow(0.0);
|
|
|
|
// Create a nnc structure to use fast lookup
|
|
for (unsigned int nncIdx = 0; nncIdx < nncOutput.size(); ++nncIdx) {
|
|
const int ci1 = nncOutput[nncIdx].cell1;
|
|
const int ci2 = nncOutput[nncIdx].cell2;
|
|
nncIndices.emplace(ci1, std::make_pair(ci2, nncIdx));
|
|
}
|
|
|
|
if (anyFlows) {
|
|
flowsInfo_.reserve(numCells, 6 * numCells);
|
|
}
|
|
if (anyFlores) {
|
|
floresInfo_.reserve(numCells, 6 * numCells);
|
|
}
|
|
|
|
for (const auto& elem : elements(gridView_())) {
|
|
stencil.update(elem);
|
|
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
|
|
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
|
|
loc_flinfo.resize(stencil.numDof() - 1);
|
|
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
|
|
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
|
|
if (dofIdx > 0) {
|
|
const auto scvfIdx = dofIdx - 1;
|
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
|
int faceId = scvf.dirId();
|
|
const int cartMyIdx = simulator_().vanguard().cartesianIndex(myIdx);
|
|
const int cartNeighborIdx = simulator_().vanguard().cartesianIndex(neighborIdx);
|
|
const auto& range = nncIndices.equal_range(cartMyIdx);
|
|
for (auto it = range.first; it != range.second; ++it) {
|
|
if (it->second.first == cartNeighborIdx){
|
|
// -1 gives problem since is used for the nncInput from the deck
|
|
faceId = -2;
|
|
// the index is stored to be used for writting the outputs
|
|
nncId = it->second.second;
|
|
}
|
|
}
|
|
loc_flinfo[dofIdx - 1] = FlowInfo{faceId, flow, nncId};
|
|
}
|
|
}
|
|
if (anyFlows) {
|
|
flowsInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
|
|
}
|
|
if (anyFlores) {
|
|
floresInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
void setResAndJacobi(VectorBlock& res, MatrixBlock& bMat, const ADVectorBlock& resid) const
|
|
{
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
|
|
res[eqIdx] = resid[eqIdx].value();
|
|
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
|
|
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
|
|
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
|
|
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
|
|
// with regard to the focus variable 'pvIdx' of the degree of freedom
|
|
// 'focusDofIdx'
|
|
bMat[eqIdx][pvIdx] = resid[eqIdx].derivative(pvIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <class SubDomainType>
|
|
void linearize_(const SubDomainType& domain)
|
|
{
|
|
// This check should be removed once this is addressed by
|
|
// for example storing the previous timesteps' values for
|
|
// rsmax (for DRSDT) and similar.
|
|
if (!problem_().recycleFirstIterationStorage()) {
|
|
if (!model_().storeIntensiveQuantities() && !model_().enableStorageCache()) {
|
|
OPM_THROW(std::runtime_error, "Must have cached either IQs or storage when we cannot recycle.");
|
|
}
|
|
}
|
|
|
|
OPM_TIMEBLOCK(linearize);
|
|
|
|
// We do not call resetSystem_() here, since that will set
|
|
// the full system to zero, not just our part.
|
|
// Instead, that must be called before starting the linearization.
|
|
|
|
const bool& enableFlows = simulator_().problem().eclWriter()->eclOutputModule().hasFlows() ||
|
|
simulator_().problem().eclWriter()->eclOutputModule().hasBlockFlows();
|
|
const bool& enableFlores = simulator_().problem().eclWriter()->eclOutputModule().hasFlores();
|
|
const unsigned int numCells = domain.cells.size();
|
|
const bool on_full_domain = (numCells == model_().numTotalDof());
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (unsigned ii = 0; ii < numCells; ++ii) {
|
|
OPM_TIMEBLOCK_LOCAL(linearizationForEachCell);
|
|
const unsigned globI = domain.cells[ii];
|
|
const auto& nbInfos = neighborInfo_[globI];
|
|
VectorBlock res(0.0);
|
|
MatrixBlock bMat(0.0);
|
|
ADVectorBlock adres(0.0);
|
|
ADVectorBlock darcyFlux(0.0);
|
|
const IntensiveQuantities& intQuantsIn = model_().intensiveQuantities(globI, /*timeIdx*/ 0);
|
|
|
|
// Flux term.
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachCell);
|
|
short loc = 0;
|
|
for (const auto& nbInfo : nbInfos) {
|
|
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachFace);
|
|
unsigned globJ = nbInfo.neighbor;
|
|
assert(globJ != globI);
|
|
res = 0.0;
|
|
bMat = 0.0;
|
|
adres = 0.0;
|
|
darcyFlux = 0.0;
|
|
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
|
|
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
|
|
adres *= nbInfo.res_nbinfo.faceArea;
|
|
if (enableFlows) {
|
|
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
|
|
flowsInfo_[globI][loc].flow[phaseIdx] = adres[phaseIdx].value();
|
|
}
|
|
}
|
|
if (enableFlores) {
|
|
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
|
|
floresInfo_[globI][loc].flow[phaseIdx] = darcyFlux[phaseIdx].value();
|
|
}
|
|
}
|
|
setResAndJacobi(res, bMat, adres);
|
|
residual_[globI] += res;
|
|
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
|
|
*diagMatAddress_[globI] += bMat;
|
|
bMat *= -1.0;
|
|
//SparseAdapter syntax: jacobian_->addToBlock(globJ, globI, bMat);
|
|
*nbInfo.matBlockAddress += bMat;
|
|
++loc;
|
|
}
|
|
}
|
|
|
|
// Accumulation term.
|
|
double dt = simulator_().timeStepSize();
|
|
double volume = model_().dofTotalVolume(globI);
|
|
Scalar storefac = volume / dt;
|
|
adres = 0.0;
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(computeStorage);
|
|
LocalResidual::computeStorage(adres, intQuantsIn);
|
|
}
|
|
setResAndJacobi(res, bMat, adres);
|
|
// Either use cached storage term, or compute it on the fly.
|
|
if (model_().enableStorageCache()) {
|
|
// The cached storage for timeIdx 0 (current time) is not
|
|
// used, but after storage cache is shifted at the end of the
|
|
// timestep, it will become cached storage for timeIdx 1.
|
|
model_().updateCachedStorage(globI, /*timeIdx=*/0, res);
|
|
if (model_().newtonMethod().numIterations() == 0) {
|
|
// Need to update the storage cache.
|
|
if (problem_().recycleFirstIterationStorage()) {
|
|
// Assumes nothing have changed in the system which
|
|
// affects masses calculated from primary variables.
|
|
if (on_full_domain) {
|
|
// This is to avoid resetting the start-of-step storage
|
|
// to incorrect numbers when we do local solves, where the iteration
|
|
// number will start from 0, but the starting state may not be identical
|
|
// to the start-of-step state.
|
|
// Note that a full assembly must be done before local solves
|
|
// otherwise this will be left un-updated.
|
|
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
|
|
}
|
|
} else {
|
|
Dune::FieldVector<Scalar, numEq> tmp;
|
|
IntensiveQuantities intQuantOld = model_().intensiveQuantities(globI, 1);
|
|
LocalResidual::computeStorage(tmp, intQuantOld);
|
|
model_().updateCachedStorage(globI, /*timeIdx=*/1, tmp);
|
|
}
|
|
}
|
|
res -= model_().cachedStorage(globI, 1);
|
|
} else {
|
|
OPM_TIMEBLOCK_LOCAL(computeStorage0);
|
|
Dune::FieldVector<Scalar, numEq> tmp;
|
|
IntensiveQuantities intQuantOld = model_().intensiveQuantities(globI, 1);
|
|
LocalResidual::computeStorage(tmp, intQuantOld);
|
|
// assume volume do not change
|
|
res -= tmp;
|
|
}
|
|
res *= storefac;
|
|
bMat *= storefac;
|
|
residual_[globI] += res;
|
|
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
|
|
*diagMatAddress_[globI] += bMat;
|
|
|
|
// Cell-wise source terms.
|
|
// This will include well sources if SeparateSparseSourceTerms is false.
|
|
res = 0.0;
|
|
bMat = 0.0;
|
|
adres = 0.0;
|
|
if (separateSparseSourceTerms_) {
|
|
LocalResidual::computeSourceDense(adres, problem_(), globI, 0);
|
|
} else {
|
|
LocalResidual::computeSource(adres, problem_(), globI, 0);
|
|
}
|
|
adres *= -volume;
|
|
setResAndJacobi(res, bMat, adres);
|
|
residual_[globI] += res;
|
|
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
|
|
*diagMatAddress_[globI] += bMat;
|
|
} // end of loop for cell globI.
|
|
|
|
// Add sparse source terms. For now only wells.
|
|
if (separateSparseSourceTerms_) {
|
|
problem_().wellModel().addReservoirSourceTerms(residual_, diagMatAddress_);
|
|
}
|
|
|
|
// Boundary terms. Only looping over cells with nontrivial bcs.
|
|
for (const auto& bdyInfo : boundaryInfo_) {
|
|
VectorBlock res(0.0);
|
|
MatrixBlock bMat(0.0);
|
|
ADVectorBlock adres(0.0);
|
|
const unsigned globI = bdyInfo.cell;
|
|
const IntensiveQuantities* insideIntQuants = model_().cachedIntensiveQuantities(globI, /*timeIdx*/ 0);
|
|
if (insideIntQuants == nullptr) {
|
|
throw std::logic_error("Missing updated intensive quantities for cell " + std::to_string(globI));
|
|
}
|
|
LocalResidual::computeBoundaryFlux(adres, problem_(), bdyInfo.bcdata, *insideIntQuants, globI);
|
|
adres *= bdyInfo.bcdata.faceArea;
|
|
setResAndJacobi(res, bMat, adres);
|
|
residual_[globI] += res;
|
|
////SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
|
|
*diagMatAddress_[globI] += bMat;
|
|
}
|
|
}
|
|
|
|
void updateStoredTransmissibilities()
|
|
{
|
|
if (neighborInfo_.empty()) {
|
|
// This function was called before createMatrix_() was called.
|
|
// We call initFirstIteration_(), not createMatrix_(), because
|
|
// that will also initialize the residual consistently.
|
|
initFirstIteration_();
|
|
}
|
|
unsigned numCells = model_().numTotalDof();
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (unsigned globI = 0; globI < numCells; globI++) {
|
|
auto nbInfos = neighborInfo_[globI]; // nbInfos will be a SparseTable<...>::mutable_iterator_range.
|
|
for (auto& nbInfo : nbInfos) {
|
|
unsigned globJ = nbInfo.neighbor;
|
|
nbInfo.res_nbinfo.trans = problem_().transmissibility(globI, globJ);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Simulator *simulatorPtr_;
|
|
|
|
// the jacobian matrix
|
|
std::unique_ptr<SparseMatrixAdapter> jacobian_;
|
|
|
|
// the right-hand side
|
|
GlobalEqVector residual_;
|
|
|
|
LinearizationType linearizationType_;
|
|
|
|
using ResidualNBInfo = typename LocalResidual::ResidualNBInfo;
|
|
struct NeighborInfo
|
|
{
|
|
unsigned int neighbor;
|
|
ResidualNBInfo res_nbinfo;
|
|
MatrixBlock* matBlockAddress;
|
|
};
|
|
SparseTable<NeighborInfo> neighborInfo_;
|
|
std::vector<MatrixBlock*> diagMatAddress_;
|
|
|
|
struct FlowInfo
|
|
{
|
|
int faceId;
|
|
VectorBlock flow;
|
|
unsigned int nncId;
|
|
};
|
|
SparseTable<FlowInfo> flowsInfo_;
|
|
SparseTable<FlowInfo> floresInfo_;
|
|
|
|
using ScalarFluidState = typename IntensiveQuantities::ScalarFluidState;
|
|
struct BoundaryConditionData
|
|
{
|
|
BCType type;
|
|
VectorBlock massRate;
|
|
unsigned pvtRegionIdx;
|
|
unsigned boundaryFaceIndex;
|
|
double faceArea;
|
|
double faceZCoord;
|
|
ScalarFluidState exFluidState;
|
|
};
|
|
struct BoundaryInfo
|
|
{
|
|
unsigned int cell;
|
|
int dir;
|
|
BoundaryConditionData bcdata;
|
|
};
|
|
std::vector<BoundaryInfo> boundaryInfo_;
|
|
bool separateSparseSourceTerms_ = false;
|
|
struct FullDomain
|
|
{
|
|
std::vector<int> cells;
|
|
std::vector<bool> interior;
|
|
};
|
|
FullDomain fullDomain_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // TPFA_LINEARIZER
|