mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-24 10:10:18 -06:00
118 lines
5.6 KiB
C++
118 lines
5.6 KiB
C++
// $Id$
|
|
/*****************************************************************************
|
|
* Copyright (C) 2008-2009 by Markus Wolff *
|
|
* Institute of Hydraulic Engineering *
|
|
* University of Stuttgart, Germany *
|
|
* email: <givenname>.<name>@iws.uni-stuttgart.de *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version, as long as this copyright notice *
|
|
* is included in its original form. *
|
|
* *
|
|
* This program is distributed WITHOUT ANY WARRANTY. *
|
|
*****************************************************************************/
|
|
#include "config.h"
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <dune/grid/sgrid.hh> /*@\label{tutorial-decoupled:include-begin}@*/
|
|
#include <dune/grid/io/file/vtk/vtkwriter.hh>
|
|
#include <dune/istl/io.hh>
|
|
#include <dune/common/timer.hh>
|
|
#include "dumux/fractionalflow/variableclass2p.hh"
|
|
#include "dumux/fractionalflow/define2pmodel.hh"
|
|
#include "dumux/material/fluids/water.hh"
|
|
#include "dumux/material/fluids/lowviscosityoil.hh"
|
|
#include "tutorial_soilproperties_decoupled.hh"
|
|
#include "dumux/material/twophaserelations.hh"
|
|
#include "tutorialproblem_decoupled.hh"
|
|
#include "dumux/diffusion/fv/fvvelocity2p.hh"
|
|
#include "dumux/transport/fv/fvsaturation2p.hh"
|
|
#include "dumux/fractionalflow/impes/impes.hh"
|
|
#include "dumux/timedisc/timeloop.hh" /*@\label{tutorial-decoupled:include-end}@*/
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
try{
|
|
// define the problem dimensions
|
|
const int dim=2; /*@\label{tutorial-decoupled:dim}@*/
|
|
|
|
// create a grid object
|
|
typedef double Scalar; /*@\label{tutorial-decoupled:grid-begin}@*/
|
|
typedef Dune::SGrid<dim,dim> Grid;
|
|
typedef Grid::LevelGridView GridView;
|
|
typedef Dune::FieldVector<Grid::ctype,dim> FieldVector;
|
|
Dune::FieldVector<int,dim> N(10); N[0] = 30;
|
|
FieldVector L(0);
|
|
FieldVector H(60); H[0] = 300;
|
|
Grid grid(N,L,H);
|
|
GridView gridView(grid.levelView(0));/*@\label{tutorial-decoupled:grid-end}@*/
|
|
|
|
|
|
// define fluid and solid properties and constitutive relationships
|
|
Dune::Water wettingfluid; /*@\label{tutorial-decoupled:water}@*/
|
|
Dune::LowViscosityOil nonwettingfluid; /*@\label{tutorial-decoupled:oil}@*/
|
|
Dune::TutorialSoil<Grid, Scalar> soil; /*@\label{tutorial-decoupled:soil}@*/
|
|
Dune::TwoPhaseRelations<Grid, Scalar> materialLaw(soil, wettingfluid, nonwettingfluid);/*@\label{tutorial-decoupled:twophaserelations}@*/
|
|
|
|
// create object containing the variables
|
|
typedef Dune::VariableClass<GridView, Scalar> VariableClass;
|
|
VariableClass variables(gridView);
|
|
|
|
//choose kind of two-phase model. Default: pw, Sw, vtotal
|
|
struct Dune::DefineModel modelDef;
|
|
// modelDef.pressureType = modelDef.pressureW;
|
|
// modelDef.saturationType = modelDef.saturationW;
|
|
// modelDef.velocityType = modelDef.velocityTotal;
|
|
|
|
// create object including the problem definition
|
|
typedef Dune::TutorialProblemDecoupled<GridView, Scalar, VariableClass> Problem;
|
|
Problem problem(variables, wettingfluid, nonwettingfluid, soil, materialLaw,L, H); /*@\label{tutorial-decoupled:problem}@*/
|
|
|
|
// create object including the discretisation of the pressure equation
|
|
typedef Dune::FVVelocity2P<GridView, Scalar, VariableClass, Problem> Diffusion;
|
|
Diffusion diffusion(gridView, problem, modelDef); /*@\label{tutorial-decoupled:diffusion}@*/
|
|
|
|
// create object including the space discretisation of the saturation equation
|
|
typedef Dune::FVSaturation2P<GridView, Scalar, VariableClass, Problem> Transport;
|
|
Transport transport(gridView, problem, modelDef); /*@\label{tutorial-decoupled:transport}@*/
|
|
|
|
// some parameters used in the IMPES-object
|
|
int iterFlag = 0;
|
|
int nIter = 2;
|
|
double maxDefect = 1e-5;
|
|
|
|
// create object including the IMPES (IMplicit Pressure Explicit Saturation) algorithm
|
|
typedef Dune::IMPES<GridView, Diffusion, Transport, VariableClass> IMPES;
|
|
IMPES impes(diffusion, transport, iterFlag, nIter, maxDefect); /*@\label{tutorial-decoupled:impes}@*/
|
|
|
|
// some parameters needed for the TimeLoop-object
|
|
double tStart = 0; // start simulation at t = tStart
|
|
double tEnd = 4e7; // stop simulation at t = tEnd
|
|
const char* fileName = "tutorial_decoupled"; // name of the output files
|
|
int modulo = 1; // define time step interval in which output files are generated
|
|
double cFLFactor = 0.9; // security factor for the Courant-Friedrichs-Lewy-Criterion
|
|
|
|
// create TimeLoop-object
|
|
Dune::TimeLoop<GridView, IMPES> timeloop(gridView, tStart, tEnd, fileName, modulo, cFLFactor); /*@\label{tutorial-decoupled:timeloop}@*/
|
|
|
|
Dune::Timer timer;
|
|
timer.reset();
|
|
|
|
// start simulation
|
|
timeloop.execute(impes); /*@\label{tutorial-decoupled:execute}@*/
|
|
|
|
return 0;
|
|
}
|
|
catch (Dune::Exception &e){
|
|
std::cerr << "Dune reported error: " << e << std::endl;
|
|
return 1;
|
|
}
|
|
catch (...){
|
|
std::cerr << "Unknown exception thrown!" << std::endl;
|
|
return 1;
|
|
}
|
|
}
|