opm-simulators/opm/simulators/wells/BlackoilWellModelGeneric.hpp
Bård Skaflestad 16c8184e3f
Merge pull request #4914 from vkip/extra_network_output
Allow output of network pressures based on rates at end of time step
2023-11-09 23:19:48 +01:00

596 lines
21 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILWELLMODEL_GENERIC_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_GENERIC_HEADER_INCLUDED
#include <opm/output/data/GuideRateValue.hpp>
#include <opm/input/eclipse/Schedule/Group/GuideRate.hpp>
#include <opm/input/eclipse/Schedule/Well/PAvg.hpp>
#include <opm/input/eclipse/Schedule/Well/PAvgCalculator.hpp>
#include <opm/input/eclipse/Schedule/Well/PAvgCalculatorCollection.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/ParallelPAvgDynamicSourceData.hpp>
#include <opm/simulators/wells/ParallelWBPCalculation.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/WellFilterCake.hpp>
#include <opm/simulators/wells/WellProdIndexCalculator.hpp>
#include <opm/simulators/wells/WGState.hpp>
#include <cstddef>
#include <functional>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace Opm {
class DeferredLogger;
class EclipseState;
class GasLiftGroupInfo;
class GasLiftSingleWellGeneric;
class GasLiftWellState;
class Group;
class GuideRateConfig;
class ParallelWellInfo;
class RestartValue;
class Schedule;
struct SimulatorUpdate;
class SummaryConfig;
class VFPProperties;
class WellInterfaceGeneric;
class WellState;
} // namespace Opm
namespace Opm { namespace data {
struct GroupData;
struct GroupGuideRates;
class GroupAndNetworkValues;
struct NodeData;
}} // namespace Opm::data
namespace Opm {
/// Class for handling the blackoil well model.
class BlackoilWellModelGeneric
{
public:
// --------- Types ---------
using GLiftOptWells = std::map<std::string, std::unique_ptr<GasLiftSingleWellGeneric>>;
using GLiftProdWells = std::map<std::string, const WellInterfaceGeneric*>;
using GLiftWellStateMap = std::map<std::string, std::unique_ptr<GasLiftWellState>>;
BlackoilWellModelGeneric(Schedule& schedule,
const SummaryState& summaryState,
const EclipseState& eclState,
const PhaseUsage& phase_usage,
const Parallel::Communication& comm);
virtual ~BlackoilWellModelGeneric() = default;
int numLocalWells() const;
int numLocalWellsEnd() const;
int numLocalNonshutWells() const;
int numPhases() const;
/// return true if wells are available in the reservoir
bool wellsActive() const;
bool hasWell(const std::string& wname) const;
/// return true if network is active (at least one network well in prediction mode)
bool networkActive() const;
// whether there exists any multisegment well open on this process
bool anyMSWellOpenLocal() const;
const Well& getWellEcl(const std::string& well_name) const;
std::vector<Well> getLocalWells(const int timeStepIdx) const;
const Schedule& schedule() const { return schedule_; }
const PhaseUsage& phaseUsage() const { return phase_usage_; }
const GroupState& groupState() const { return this->active_wgstate_.group_state; }
std::vector<const WellInterfaceGeneric*> genericWells() const
{ return {well_container_generic_.begin(), well_container_generic_.end()}; }
/*
Immutable version of the currently active wellstate.
*/
const WellState& wellState() const
{
return this->active_wgstate_.well_state;
}
/*
Mutable version of the currently active wellstate.
*/
WellState& wellState()
{
return this->active_wgstate_.well_state;
}
/*
Will return the currently active nupcolWellState; must initialize
the internal nupcol wellstate with initNupcolWellState() first.
*/
const WellState& nupcolWellState() const
{
return this->nupcol_wgstate_.well_state;
}
GroupState& groupState() { return this->active_wgstate_.group_state; }
WellTestState& wellTestState() { return this->active_wgstate_.well_test_state; }
const WellTestState& wellTestState() const { return this->active_wgstate_.well_test_state; }
double wellPI(const int well_index) const;
double wellPI(const std::string& well_name) const;
void updateEclWells(const int timeStepIdx,
const SimulatorUpdate& sim_update,
const SummaryState& st);
void initFromRestartFile(const RestartValue& restartValues,
WellTestState wtestState,
const std::size_t numCells,
bool handle_ms_well);
void prepareDeserialize(int report_step,
const std::size_t numCells,
bool handle_ms_well);
/*
Will assign the internal member last_valid_well_state_ to the
current value of the this->active_well_state_. The state stored
with storeWellState() can then subsequently be recovered with the
resetWellState() method.
*/
void commitWGState()
{
this->last_valid_wgstate_ = this->active_wgstate_;
}
data::GroupAndNetworkValues groupAndNetworkData(const int reportStepIdx) const;
/// Return true if any well has a THP constraint.
bool hasTHPConstraints() const;
/// Checks if network is active (at least one network well on prediction).
void updateNetworkActiveState(const int report_step);
/// Checks if there are reasons to perform a pre-step network re-balance.
/// (Currently, the only reasons are network well status changes.)
/// (TODO: Consider if adding network change events would be helpful.)
bool needPreStepNetworkRebalance(const int report_step) const;
/// Shut down any single well
/// Returns true if the well was actually found and shut.
bool forceShutWellByName(const std::string& wellname,
const double simulation_time);
const std::vector<PerforationData>& perfData(const int well_idx) const
{ return well_perf_data_[well_idx]; }
const Parallel::Communication& comm() const { return comm_; }
const EclipseState& eclipseState() const { return eclState_; }
const SummaryState& summaryState() const { return summaryState_; }
const GuideRate& guideRate() const { return guideRate_; }
bool reportStepStarts() const { return report_step_starts_; }
bool shouldBalanceNetwork(const int reportStepIndex,
const int iterationIdx) const;
void updateClosedWellsThisStep(const std::string& well_name) const {
this->closed_this_step_.insert(well_name);
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(initial_step_);
serializer(report_step_starts_);
serializer(last_run_wellpi_);
serializer(local_shut_wells_);
serializer(closed_this_step_);
serializer(guideRate_);
serializer(node_pressures_);
serializer(prev_inj_multipliers_);
serializer(active_wgstate_);
serializer(last_valid_wgstate_);
serializer(nupcol_wgstate_);
serializer(last_glift_opt_time_);
serializer(switched_prod_groups_);
serializer(switched_inj_groups_);
}
bool operator==(const BlackoilWellModelGeneric& rhs) const
{
return this->initial_step_ == rhs.initial_step_ &&
this->report_step_starts_ == rhs.report_step_starts_ &&
this->last_run_wellpi_ == rhs.last_run_wellpi_ &&
this->local_shut_wells_ == rhs.local_shut_wells_ &&
this->closed_this_step_ == rhs.closed_this_step_ &&
this->node_pressures_ == rhs.node_pressures_ &&
this->prev_inj_multipliers_ == rhs.prev_inj_multipliers_ &&
this->active_wgstate_ == rhs.active_wgstate_ &&
this->last_valid_wgstate_ == rhs.last_valid_wgstate_ &&
this->nupcol_wgstate_ == rhs.nupcol_wgstate_ &&
this->last_glift_opt_time_ == rhs.last_glift_opt_time_ &&
this->switched_prod_groups_ == rhs.switched_prod_groups_ &&
this->switched_inj_groups_ == rhs.switched_inj_groups_;
}
protected:
/*
The dynamic state of the well model is maintained with an instance
of the WellState class. Currently we have
three different wellstate instances:
1. The currently active wellstate is in the active_well_state_
member. That is the state which is mutated by the simulator.
2. In the case timestep fails to converge and we must go back and
try again with a smaller timestep we need to recover the last
valid wellstate. This is maintained with the
last_valid_well_state_ member and the functions
commitWellState() and resetWellState().
3. For the NUPCOL functionality we should either use the
currently active wellstate or a wellstate frozen at max
nupcol iterations. This is handled with the member
nupcol_well_state_ and the initNupcolWellState() function.
*/
/*
Will return the last good wellstate. This is typcially used when
initializing a new report step where the Schedule object might
have introduced new wells. The wellstate returned by
prevWellState() must have been stored with the commitWellState()
function first.
*/
const WellState& prevWellState() const
{
return this->last_valid_wgstate_.well_state;
}
const WGState& prevWGState() const
{
return this->last_valid_wgstate_;
}
/*
Will store a copy of the input argument well_state in the
last_valid_well_state_ member, that state can then be recovered
with a subsequent call to resetWellState().
*/
void commitWGState(WGState wgstate)
{
this->last_valid_wgstate_ = std::move(wgstate);
}
/*
Will update the internal variable active_well_state_ to whatever
was stored in the last_valid_well_state_ member. This function
works in pair with commitWellState() which should be called first.
*/
void resetWGState()
{
this->active_wgstate_ = this->last_valid_wgstate_;
}
/*
Will store the current active wellstate in the nupcol_well_state_
member. This can then be subsequently retrieved with accessor
nupcolWellState().
*/
void updateNupcolWGState()
{
this->nupcol_wgstate_ = this->active_wgstate_;
}
/// \brief Create the parallel well information
/// \param localWells The local wells from ECL schedule
std::vector<std::reference_wrapper<ParallelWellInfo>> createLocalParallelWellInfo(const std::vector<Well>& wells);
void initializeWellProdIndCalculators();
void initializeWellPerfData();
bool wasDynamicallyShutThisTimeStep(const int well_index) const;
double updateNetworkPressures(const int reportStepIdx);
void updateWsolvent(const Group& group,
const int reportStepIdx,
const WellState& wellState);
void setWsolvent(const Group& group,
const int reportStepIdx,
double wsolvent);
virtual void calcRates(const int fipnum,
const int pvtreg,
const std::vector<double>& production_rates,
std::vector<double>& resv_coeff) = 0;
virtual void calcInjRates(const int fipnum,
const int pvtreg,
std::vector<double>& resv_coeff) = 0;
void assignShutConnections(data::Wells& wsrpt,
const int reportStepIndex) const;
void assignGroupControl(const Group& group,
data::GroupData& gdata) const;
void assignGroupValues(const int reportStepIdx,
std::map<std::string, data::GroupData>& gvalues) const;
void assignNodeValues(std::map<std::string, data::NodeData>& nodevalues, const int reportStepIdx) const;
void calculateEfficiencyFactors(const int reportStepIdx);
void checkGconsaleLimits(const Group& group,
WellState& well_state,
const int reportStepIdx,
DeferredLogger& deferred_logger);
void checkGEconLimits(const Group& group,
const double simulation_time,
const int report_step_idx,
DeferredLogger& deferred_logger);
bool checkGroupHigherConstraints(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx);
void updateAndCommunicateGroupData(const int reportStepIdx,
const int iterationIdx);
void inferLocalShutWells();
void setRepRadiusPerfLength();
void gliftDebug(const std::string& msg,
DeferredLogger& deferred_logger) const;
void gliftDebugShowALQ(DeferredLogger& deferred_logger);
void gasLiftOptimizationStage2(DeferredLogger& deferred_logger,
GLiftProdWells& prod_wells,
GLiftOptWells& glift_wells,
GasLiftGroupInfo& group_info,
GLiftWellStateMap& map,
const int episodeIndex);
virtual void computePotentials(const std::size_t widx,
const WellState& well_state_copy,
std::string& exc_msg,
ExceptionType::ExcEnum& exc_type,
DeferredLogger& deferred_logger) = 0;
// Calculating well potentials for each well
void updateWellPotentials(const int reportStepIdx,
const bool onlyAfterEvent,
const SummaryConfig& summaryConfig,
DeferredLogger& deferred_logger);
void initInjMult();
void updateInjMult(DeferredLogger& deferred_logger);
void updateInjFCMult(DeferredLogger& deferred_logger);
void updateFiltrationParticleVolume(const double dt, const std::size_t water_index);
// create the well container
virtual void createWellContainer(const int time_step) = 0;
virtual void initWellContainer(const int reportStepIdx) = 0;
virtual void calculateProductivityIndexValuesShutWells(const int reportStepIdx,
DeferredLogger& deferred_logger) = 0;
virtual void calculateProductivityIndexValues(DeferredLogger& deferred_logger) = 0;
void runWellPIScaling(const int reportStepIdx,
DeferredLogger& local_deferredLogger);
/// \brief get compressed index for interior cells (-1, otherwise
virtual int compressedIndexForInterior(int cartesian_cell_idx) const = 0;
std::vector<int> getCellsForConnections(const Well& well) const;
std::vector<std::vector<int>> getMaxWellConnections() const;
std::vector<std::string> getWellsForTesting(const int timeStepIdx,
const double simulationTime);
using WellTracerRates = std::map<std::pair<std::string, std::string>, double>;
void assignWellTracerRates(data::Wells& wsrpt,
const WellTracerRates& wellTracerRates) const;
Schedule& schedule_;
const SummaryState& summaryState_;
const EclipseState& eclState_;
const Parallel::Communication& comm_;
PhaseUsage phase_usage_;
bool terminal_output_{false};
bool wells_active_{false};
bool network_active_{false};
bool initial_step_{};
bool report_step_starts_{};
std::optional<int> last_run_wellpi_{};
std::vector<Well> wells_ecl_;
std::vector<std::vector<PerforationData>> well_perf_data_;
/// Connection index mappings
class ConnectionIndexMap
{
public:
/// Constructor.
///
/// \param[in] numConns Total number of well connections, both open
/// and closed/shut. Typically \code WellConnections::size() \endcode.
explicit ConnectionIndexMap(const std::size_t numConns)
: local_(numConns, -1)
{
this->global_.reserve(numConns);
this->open_.reserve(numConns);
}
/// Enumerate/map new active connection.
///
/// \param[in] connIdx Global well connection index. Must be an
/// integer in the range 0..numConns-1.
///
/// \param[in] connIsOpen Whether or not the connection is
/// open/flowing.
void addActiveConnection(const int connIdx,
const bool connIsOpen)
{
this->local_[connIdx] =
static_cast<int>(this->global_.size());
this->global_.push_back(connIdx);
const auto open_conn_idx = connIsOpen
? this->num_open_conns_++
: -1;
this->open_.push_back(open_conn_idx);
}
/// Get local connection IDs/indices of every existing well
/// connection.
///
/// Negative value (-1) for connections that don't intersect the
/// current rank.
const std::vector<int>& local() const
{
return this->local_;
}
/// Get global connection ID of local (on-rank) connection.
///
/// \param[in] connIdx Local connection index.
///
/// \return Global connection ID of \p connIdx.
int global(const int connIdx) const
{
return this->global_[connIdx];
}
/// Get open connection ID of local (on-rank) connection.
///
/// \param[in] connIdx Local connection index.
///
/// \return Open connection ID of \p connIdx. Integer in the range
/// 0..#open connections - 1 if the connection is open or negative
/// value (-1) otherwise.
int open(const int connIdx) const
{
return this->open_[connIdx];
}
private:
/// Local connection IDs/indices of every existing well connection.
/// Negative value (-1) for connections that don't intersect the
/// current rank.
std::vector<int> local_{};
/// Global connection index of each on-rank reservoir connection.
/// Reverse/transpose mapping of \c local_.
std::vector<int> global_{};
/// Open connection index of each on-rank reservoir connection.
std::vector<int> open_{};
/// Number of open connections on this rank.
int num_open_conns_{0};
};
std::vector<ConnectionIndexMap> conn_idx_map_{};
std::function<bool(const Well&)> not_on_process_{};
// a vector of all the wells.
std::vector<WellInterfaceGeneric*> well_container_generic_{};
std::vector<int> local_shut_wells_{};
std::vector<ParallelWellInfo> parallel_well_info_;
std::vector<std::reference_wrapper<ParallelWellInfo>> local_parallel_well_info_;
std::vector<WellProdIndexCalculator> prod_index_calc_;
mutable ParallelWBPCalculation wbpCalculationService_;
std::vector<int> pvt_region_idx_;
mutable std::unordered_set<std::string> closed_this_step_;
GuideRate guideRate_;
std::unique_ptr<VFPProperties> vfp_properties_{};
std::map<std::string, double> node_pressures_; // Storing network pressures for output.
// previous injection multiplier, it is used in the injection multiplier calculation for WINJMULT keyword
std::unordered_map<std::string, std::vector<double>> prev_inj_multipliers_;
// Handling for filter cake injection multipliers
std::unordered_map<std::string, WellFilterCake> filter_cake_;
/*
The various wellState members should be accessed and modified
through the accessor functions wellState(), prevWellState(),
commitWellState(), resetWellState(), nupcolWellState() and
updateNupcolWellState().
*/
WGState active_wgstate_;
WGState last_valid_wgstate_;
WGState nupcol_wgstate_;
bool glift_debug = false;
double last_glift_opt_time_ = -1.0;
bool wellStructureChangedDynamically_{false};
std::map<std::string, std::string> switched_prod_groups_;
std::map<std::pair<std::string, Opm::Phase>, std::string> switched_inj_groups_;
private:
WellInterfaceGeneric* getGenWell(const std::string& well_name);
};
} // namespace Opm
#endif