opm-simulators/opm/simulators/wells/MultisegmentWell_impl.hpp
Tor Harald Sandve b5cdb1048a Mark wells with negative and trivial potentials as not operable
The simulator will try to compute potentials at every iterations to
try to reopen the well.
2021-11-22 08:44:17 +00:00

1978 lines
86 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/simulators/wells/MSWellHelpers.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/MSW/Valve.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <string>
#include <algorithm>
#if HAVE_CUDA || HAVE_OPENCL
#include <opm/simulators/linalg/bda/WellContributions.hpp>
#endif
namespace Opm
{
template <typename TypeTag>
MultisegmentWell<TypeTag>::
MultisegmentWell(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData>& perf_data)
: Base(well, pw_info, time_step, param, rate_converter, pvtRegionIdx, num_components, num_phases, index_of_well, perf_data)
, MSWEval(static_cast<WellInterfaceIndices<FluidSystem,Indices,Scalar>&>(*this))
, segment_fluid_initial_(this->numberOfSegments(), std::vector<double>(this->num_components_, 0.0))
{
// not handling solvent or polymer for now with multisegment well
if constexpr (has_solvent) {
OPM_THROW(std::runtime_error, "solvent is not supported by multisegment well yet");
}
if constexpr (has_polymer) {
OPM_THROW(std::runtime_error, "polymer is not supported by multisegment well yet");
}
if constexpr (Base::has_energy) {
OPM_THROW(std::runtime_error, "energy is not supported by multisegment well yet");
}
if constexpr (Base::has_foam) {
OPM_THROW(std::runtime_error, "foam is not supported by multisegment well yet");
}
if constexpr (Base::has_brine) {
OPM_THROW(std::runtime_error, "brine is not supported by multisegment well yet");
}
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells,
const std::vector< Scalar >& B_avg)
{
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells, B_avg);
// TODO: for StandardWell, we need to update the perf depth here using depth_arg.
// for MultisegmentWell, it is much more complicated.
// It can be specified directly, it can be calculated from the segment depth,
// it can also use the cell center, which is the same for StandardWell.
// For the last case, should we update the depth with the depth_arg? For the
// future, it can be a source of wrong result with Multisegment well.
// An indicator from the opm-parser should indicate what kind of depth we should use here.
// \Note: we do not update the depth here. And it looks like for now, we only have the option to use
// specified perforation depth
this->initMatrixAndVectors(num_cells);
// calcuate the depth difference between the perforations and the perforated grid block
for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
const int cell_idx = this->well_cells_[perf];
this->cell_perforation_depth_diffs_[perf] = depth_arg[cell_idx] - this->perf_depth_[perf];
}
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
initPrimaryVariablesEvaluation() const
{
this->MSWEval::initPrimaryVariablesEvaluation();
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
updatePrimaryVariables(const WellState& well_state, DeferredLogger& /* deferred_logger */) const
{
this->MSWEval::updatePrimaryVariables(well_state);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
updateWellStateWithTarget(const Simulator& ebos_simulator,
const GroupState& group_state,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
Base::updateWellStateWithTarget(ebos_simulator, group_state, well_state, deferred_logger);
// scale segment rates based on the wellRates
// and segment pressure based on bhp
this->scaleSegmentRatesWithWellRates(well_state);
this->scaleSegmentPressuresWithBhp(well_state);
}
template <typename TypeTag>
ConvergenceReport
MultisegmentWell<TypeTag>::
getWellConvergence(const WellState& well_state,
const std::vector<double>& B_avg,
DeferredLogger& deferred_logger,
const bool relax_tolerance) const
{
return this->MSWEval::getWellConvergence(well_state,
B_avg,
deferred_logger,
this->param_.max_residual_allowed_,
this->param_.tolerance_wells_,
this->param_.relaxed_tolerance_flow_well_,
this->param_.tolerance_pressure_ms_wells_,
this->param_.relaxed_tolerance_pressure_ms_well_,
relax_tolerance);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped()) return;
if ( this->param_.matrix_add_well_contributions_ )
{
// Contributions are already in the matrix itself
return;
}
BVectorWell Bx(this->duneB_.N());
this->duneB_.mv(x, Bx);
// invDBx = duneD^-1 * Bx_
const BVectorWell invDBx = mswellhelpers::applyUMFPack(this->duneD_, this->duneDSolver_, Bx);
// Ax = Ax - duneC_^T * invDBx
this->duneC_.mmtv(invDBx,Ax);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
apply(BVector& r) const
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped()) return;
// invDrw_ = duneD^-1 * resWell_
const BVectorWell invDrw = mswellhelpers::applyUMFPack(this->duneD_, this->duneDSolver_, this->resWell_);
// r = r - duneC_^T * invDrw
this->duneC_.mmtv(invDrw, r);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped()) return;
BVectorWell xw(1);
this->recoverSolutionWell(x, xw);
updateWellState(xw, well_state, deferred_logger);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials,
DeferredLogger& deferred_logger)
{
const int np = this->number_of_phases_;
well_potentials.resize(np, 0.0);
// Stopped wells have zero potential.
if (this->wellIsStopped()) {
return;
}
this->operability_status_.has_non_positive_potentials = false;
// If the well is pressure controlled the potential equals the rate.
bool thp_controlled_well = false;
bool bhp_controlled_well = false;
const auto& ws = well_state.well(this->index_of_well_);
if (this->isInjector()) {
const Well::InjectorCMode& current = ws.injection_cmode;
if (current == Well::InjectorCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::InjectorCMode::BHP) {
bhp_controlled_well = true;
}
} else {
const Well::ProducerCMode& current = ws.production_cmode;
if (current == Well::ProducerCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::ProducerCMode::BHP) {
bhp_controlled_well = true;
}
}
if (thp_controlled_well || bhp_controlled_well) {
double total_rate = 0.0;
for (int phase = 0; phase < np; ++phase){
total_rate += ws.surface_rates[phase];
}
// for pressure controlled wells the well rates are the potentials
// if the rates are trivial we are most probably looking at the newly
// opened well and we therefore make the affort of computing the potentials anyway.
if (std::abs(total_rate) > 0) {
const double sign = this->isInjector() ? 1.0:-1.0;
double total_potential = 0.0;
for (int phase = 0; phase < np; ++phase){
well_potentials[phase] = sign * ws.surface_rates[phase];
total_potential += well_potentials[phase];
}
if (total_potential <= 0.0) {
// wells with trivial or non-positive potentials
// are not operable
this->operability_status_.has_non_positive_potentials = true;
const std::string msg = std::string("well ") + this->name() + std::string(": has non positive potentials and is not operable");
deferred_logger.info(msg);
}
return;
}
}
debug_cost_counter_ = 0;
// does the well have a THP related constraint?
const auto& summaryState = ebosSimulator.vanguard().summaryState();
if (!Base::wellHasTHPConstraints(summaryState) || bhp_controlled_well) {
computeWellRatesAtBhpLimit(ebosSimulator, well_potentials, deferred_logger);
} else {
well_potentials = computeWellPotentialWithTHP(ebosSimulator, deferred_logger);
}
deferred_logger.debug("Cost in iterations of finding well potential for well "
+ this->name() + ": " + std::to_string(debug_cost_counter_));
const double sign = this->isInjector() ? 1.0:-1.0;
double total_potential = 0.0;
for (int phase = 0; phase < np; ++phase){
well_potentials[phase] *= sign;
total_potential += well_potentials[phase];
}
if (total_potential <= 0.0) {
// wells with trivial or non-positive potentials
// are not operable
this->operability_status_.has_non_positive_potentials = true;
const std::string msg = std::string("well ") + this->name() + std::string(": has non positive potentials is not operable");
deferred_logger.info(msg);
}
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeWellRatesAtBhpLimit(const Simulator& ebosSimulator,
std::vector<double>& well_flux,
DeferredLogger& deferred_logger) const
{
if (this->well_ecl_.isInjector()) {
const auto controls = this->well_ecl_.injectionControls(ebosSimulator.vanguard().summaryState());
computeWellRatesWithBhpIterations(ebosSimulator, controls.bhp_limit, well_flux, deferred_logger);
} else {
const auto controls = this->well_ecl_.productionControls(ebosSimulator.vanguard().summaryState());
computeWellRatesWithBhpIterations(ebosSimulator, controls.bhp_limit, well_flux, deferred_logger);
}
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeWellRatesWithBhp(const Simulator& ebosSimulator,
const Scalar& bhp,
std::vector<double>& well_flux,
DeferredLogger& deferred_logger) const
{
const int np = this->number_of_phases_;
well_flux.resize(np, 0.0);
const bool allow_cf = this->getAllowCrossFlow();
const int nseg = this->numberOfSegments();
const WellState& well_state = ebosSimulator.problem().wellModel().wellState();
const auto& ws = well_state.well(this->indexOfWell());
auto segments_copy = ws.segments;
segments_copy.scale_pressure(bhp);
const auto& segment_pressure = segments_copy.pressure;
for (int seg = 0; seg < nseg; ++seg) {
for (const int perf : this->segment_perforations_[seg]) {
const int cell_idx = this->well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
// flux for each perforation
std::vector<Scalar> mob(this->num_components_, 0.);
getMobilityScalar(ebosSimulator, perf, mob);
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
const double Tw = this->well_index_[perf] * trans_mult;
const Scalar seg_pressure = segment_pressure[seg];
std::vector<Scalar> cq_s(this->num_components_, 0.);
computePerfRateScalar(intQuants, mob, Tw, seg, perf, seg_pressure,
allow_cf, cq_s, deferred_logger);
for(int p = 0; p < np; ++p) {
well_flux[this->ebosCompIdxToFlowCompIdx(p)] += cq_s[p];
}
}
}
this->parallel_well_info_.communication().sum(well_flux.data(), well_flux.size());
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeWellRatesWithBhpIterations(const Simulator& ebosSimulator,
const Scalar& bhp,
std::vector<double>& well_flux,
DeferredLogger& deferred_logger) const
{
// creating a copy of the well itself, to avoid messing up the explicit informations
// during this copy, the only information not copied properly is the well controls
MultisegmentWell<TypeTag> well_copy(*this);
well_copy.debug_cost_counter_ = 0;
// store a copy of the well state, we don't want to update the real well state
WellState well_state_copy = ebosSimulator.problem().wellModel().wellState();
const auto& group_state = ebosSimulator.problem().wellModel().groupState();
auto& ws = well_state_copy.well(this->index_of_well_);
// Get the current controls.
const auto& summary_state = ebosSimulator.vanguard().summaryState();
auto inj_controls = well_copy.well_ecl_.isInjector()
? well_copy.well_ecl_.injectionControls(summary_state)
: Well::InjectionControls(0);
auto prod_controls = well_copy.well_ecl_.isProducer()
? well_copy.well_ecl_.productionControls(summary_state) :
Well::ProductionControls(0);
// Set current control to bhp, and bhp value in state, modify bhp limit in control object.
if (well_copy.well_ecl_.isInjector()) {
inj_controls.bhp_limit = bhp;
ws.injection_cmode = Well::InjectorCMode::BHP;
} else {
prod_controls.bhp_limit = bhp;
ws.production_cmode = Well::ProducerCMode::BHP;
}
ws.bhp = bhp;
well_copy.scaleSegmentPressuresWithBhp(well_state_copy);
// initialized the well rates with the potentials i.e. the well rates based on bhp
const int np = this->number_of_phases_;
const double sign = well_copy.well_ecl_.isInjector() ? 1.0 : -1.0;
for (int phase = 0; phase < np; ++phase){
ws.surface_rates[phase] = sign * ws.well_potentials[phase];
}
well_copy.scaleSegmentRatesWithWellRates(well_state_copy);
well_copy.calculateExplicitQuantities(ebosSimulator, well_state_copy, deferred_logger);
const double dt = ebosSimulator.timeStepSize();
// iterate to get a solution at the given bhp.
well_copy.iterateWellEqWithControl(ebosSimulator, dt, inj_controls, prod_controls, well_state_copy, group_state,
deferred_logger);
// compute the potential and store in the flux vector.
well_flux.clear();
well_flux.resize(np, 0.0);
for (int compIdx = 0; compIdx < this->num_components_; ++compIdx) {
const EvalWell rate = well_copy.getQs(compIdx);
well_flux[this->ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
}
debug_cost_counter_ += well_copy.debug_cost_counter_;
}
template<typename TypeTag>
std::vector<double>
MultisegmentWell<TypeTag>::
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
DeferredLogger& deferred_logger) const
{
std::vector<double> potentials(this->number_of_phases_, 0.0);
const auto& summary_state = ebos_simulator.vanguard().summaryState();
const auto& well = this->well_ecl_;
if (well.isInjector()){
auto bhp_at_thp_limit = computeBhpAtThpLimitInj(ebos_simulator, summary_state, deferred_logger);
if (bhp_at_thp_limit) {
const auto& controls = well.injectionControls(summary_state);
const double bhp = std::min(*bhp_at_thp_limit, controls.bhp_limit);
computeWellRatesWithBhpIterations(ebos_simulator, bhp, potentials, deferred_logger);
deferred_logger.debug("Converged thp based potential calculation for well "
+ this->name() + ", at bhp = " + std::to_string(bhp));
} else {
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
"Failed in getting converged thp based potential calculation for well "
+ this->name() + ". Instead the bhp based value is used");
const auto& controls = well.injectionControls(summary_state);
const double bhp = controls.bhp_limit;
computeWellRatesWithBhpIterations(ebos_simulator, bhp, potentials, deferred_logger);
}
} else {
auto bhp_at_thp_limit = computeBhpAtThpLimitProd(ebos_simulator, summary_state, deferred_logger);
if (bhp_at_thp_limit) {
const auto& controls = well.productionControls(summary_state);
const double bhp = std::max(*bhp_at_thp_limit, controls.bhp_limit);
computeWellRatesWithBhpIterations(ebos_simulator, bhp, potentials, deferred_logger);
deferred_logger.debug("Converged thp based potential calculation for well "
+ this->name() + ", at bhp = " + std::to_string(bhp));
} else {
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
"Failed in getting converged thp based potential calculation for well "
+ this->name() + ". Instead the bhp based value is used");
const auto& controls = well.productionControls(summary_state);
const double bhp = controls.bhp_limit;
computeWellRatesWithBhpIterations(ebos_simulator, bhp, potentials, deferred_logger);
}
}
return potentials;
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
solveEqAndUpdateWellState(WellState& well_state, DeferredLogger& deferred_logger)
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped()) return;
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
const BVectorWell dx_well = mswellhelpers::applyUMFPack(this->duneD_, this->duneDSolver_, this->resWell_);
updateWellState(dx_well, well_state, deferred_logger);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
computePerfCellPressDiffs(const Simulator& ebosSimulator)
{
for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
std::vector<double> kr(this->number_of_phases_, 0.0);
std::vector<double> density(this->number_of_phases_, 0.0);
const int cell_idx = this->well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
double sum_kr = 0.;
const PhaseUsage& pu = this->phaseUsage();
if (pu.phase_used[Water]) {
const int water_pos = pu.phase_pos[Water];
kr[water_pos] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value();
sum_kr += kr[water_pos];
density[water_pos] = fs.density(FluidSystem::waterPhaseIdx).value();
}
if (pu.phase_used[Oil]) {
const int oil_pos = pu.phase_pos[Oil];
kr[oil_pos] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value();
sum_kr += kr[oil_pos];
density[oil_pos] = fs.density(FluidSystem::oilPhaseIdx).value();
}
if (pu.phase_used[Gas]) {
const int gas_pos = pu.phase_pos[Gas];
kr[gas_pos] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value();
sum_kr += kr[gas_pos];
density[gas_pos] = fs.density(FluidSystem::gasPhaseIdx).value();
}
assert(sum_kr != 0.);
// calculate the average density
double average_density = 0.;
for (int p = 0; p < this->number_of_phases_; ++p) {
average_density += kr[p] * density[p];
}
average_density /= sum_kr;
this->cell_perforation_pressure_diffs_[perf] = this->gravity_ * average_density * this->cell_perforation_depth_diffs_[perf];
}
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeInitialSegmentFluids(const Simulator& ebos_simulator)
{
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
// TODO: trying to reduce the times for the surfaceVolumeFraction calculation
const double surface_volume = getSegmentSurfaceVolume(ebos_simulator, seg).value();
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
segment_fluid_initial_[seg][comp_idx] = surface_volume * this->surfaceVolumeFraction(seg, comp_idx).value();
}
}
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
updateWellState(const BVectorWell& dwells,
WellState& well_state,
DeferredLogger& deferred_logger,
const double relaxation_factor) const
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped()) return;
const double dFLimit = this->param_.dwell_fraction_max_;
const double max_pressure_change = this->param_.max_pressure_change_ms_wells_;
this->MSWEval::updateWellState(dwells,
relaxation_factor,
dFLimit,
max_pressure_change);
this->updateWellStateFromPrimaryVariables(well_state, getRefDensity(), deferred_logger);
Base::calculateReservoirRates(well_state.well(this->index_of_well_));
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state,
DeferredLogger& deferred_logger)
{
updatePrimaryVariables(well_state, deferred_logger);
initPrimaryVariablesEvaluation();
computePerfCellPressDiffs(ebosSimulator);
computeInitialSegmentFluids(ebosSimulator);
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
updateProductivityIndex(const Simulator& ebosSimulator,
const WellProdIndexCalculator& wellPICalc,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
auto fluidState = [&ebosSimulator, this](const int perf)
{
const auto cell_idx = this->well_cells_[perf];
return ebosSimulator.model()
.cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)->fluidState();
};
const int np = this->number_of_phases_;
auto setToZero = [np](double* x) -> void
{
std::fill_n(x, np, 0.0);
};
auto addVector = [np](const double* src, double* dest) -> void
{
std::transform(src, src + np, dest, dest, std::plus<>{});
};
auto& ws = well_state.well(this->index_of_well_);
auto& perf_data = ws.perf_data;
auto* connPI = perf_data.prod_index.data();
auto* wellPI = ws.productivity_index.data();
setToZero(wellPI);
const auto preferred_phase = this->well_ecl_.getPreferredPhase();
auto subsetPerfID = 0;
for ( const auto& perf : *this->perf_data_){
auto allPerfID = perf.ecl_index;
auto connPICalc = [&wellPICalc, allPerfID](const double mobility) -> double
{
return wellPICalc.connectionProdIndStandard(allPerfID, mobility);
};
std::vector<Scalar> mob(this->num_components_, 0.0);
getMobilityScalar(ebosSimulator, static_cast<int>(subsetPerfID), mob);
const auto& fs = fluidState(subsetPerfID);
setToZero(connPI);
if (this->isInjector()) {
this->computeConnLevelInjInd(fs, preferred_phase, connPICalc,
mob, connPI, deferred_logger);
}
else { // Production or zero flow rate
this->computeConnLevelProdInd(fs, connPICalc, mob, connPI);
}
addVector(connPI, wellPI);
++subsetPerfID;
connPI += np;
}
assert (static_cast<int>(subsetPerfID) == this->number_of_perforations_ &&
"Internal logic error in processing connections for PI/II");
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
addWellContributions(SparseMatrixAdapter& jacobian) const
{
const auto invDuneD = mswellhelpers::invertWithUMFPack<DiagMatWell, BVectorWell>(this->duneD_, this->duneDSolver_);
// We need to change matrix A as follows
// A -= C^T D^-1 B
// D is a (nseg x nseg) block matrix with (4 x 4) blocks.
// B and C are (nseg x ncells) block matrices with (4 x 4 blocks).
// They have nonzeros at (i, j) only if this well has a
// perforation at cell j connected to segment i. The code
// assumes that no cell is connected to more than one segment,
// i.e. the columns of B/C have no more than one nonzero.
for (size_t rowC = 0; rowC < this->duneC_.N(); ++rowC) {
for (auto colC = this->duneC_[rowC].begin(), endC = this->duneC_[rowC].end(); colC != endC; ++colC) {
const auto row_index = colC.index();
for (size_t rowB = 0; rowB < this->duneB_.N(); ++rowB) {
for (auto colB = this->duneB_[rowB].begin(), endB = this->duneB_[rowB].end(); colB != endB; ++colB) {
const auto col_index = colB.index();
OffDiagMatrixBlockWellType tmp1;
Detail::multMatrixImpl(invDuneD[rowC][rowB], (*colB), tmp1, std::true_type());
typename SparseMatrixAdapter::MatrixBlock tmp2;
Detail::multMatrixTransposedImpl((*colC), tmp1, tmp2, std::false_type());
jacobian.addToBlock(row_index, col_index, tmp2);
}
}
}
}
}
template<typename TypeTag>
template<class Value>
void
MultisegmentWell<TypeTag>::
computePerfRate(const Value& pressure_cell,
const Value& rs,
const Value& rv,
const std::vector<Value>& b_perfcells,
const std::vector<Value>& mob_perfcells,
const double Tw,
const int perf,
const Value& segment_pressure,
const Value& segment_density,
const bool& allow_cf,
const std::vector<Value>& cmix_s,
std::vector<Value>& cq_s,
Value& perf_press,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
{
// pressure difference between the segment and the perforation
const Value perf_seg_press_diff = this->gravity() * segment_density * this->perforation_segment_depth_diffs_[perf];
// pressure difference between the perforation and the grid cell
const double cell_perf_press_diff = this->cell_perforation_pressure_diffs_[perf];
perf_press = pressure_cell - cell_perf_press_diff;
// Pressure drawdown (also used to determine direction of flow)
// TODO: not 100% sure about the sign of the seg_perf_press_diff
const Value drawdown = perf_press - (segment_pressure + perf_seg_press_diff);
// producing perforations
if ( drawdown > 0.0) {
// Do nothing is crossflow is not allowed
if (!allow_cf && this->isInjector()) {
return;
}
// compute component volumetric rates at standard conditions
for (int comp_idx = 0; comp_idx < this->numComponents(); ++comp_idx) {
const Value cq_p = - Tw * (mob_perfcells[comp_idx] * drawdown);
cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const Value cq_s_oil = cq_s[oilCompIdx];
const Value cq_s_gas = cq_s[gasCompIdx];
cq_s[gasCompIdx] += rs * cq_s_oil;
cq_s[oilCompIdx] += rv * cq_s_gas;
}
} else { // injecting perforations
// Do nothing if crossflow is not allowed
if (!allow_cf && this->isProducer()) {
return;
}
// for injecting perforations, we use total mobility
Value total_mob = mob_perfcells[0];
for (int comp_idx = 1; comp_idx < this->numComponents(); ++comp_idx) {
total_mob += mob_perfcells[comp_idx];
}
// injection perforations total volume rates
const Value cqt_i = - Tw * (total_mob * drawdown);
// compute volume ratio between connection and at standard conditions
Value volume_ratio = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volume_ratio += cmix_s[waterCompIdx] / b_perfcells[waterCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
// TODO: not sure we use rs rv from the perforation cells when handling injecting perforations
// basically, for injecting perforations, the wellbore is the upstreaming side.
const Value d = 1.0 - rv * rs;
if (getValue(d) == 0.0) {
OPM_DEFLOG_THROW(NumericalIssue, "Zero d value obtained for well " << this->name()
<< " during flux calculation"
<< " with rs " << rs << " and rv " << rv, deferred_logger);
}
const Value tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
volume_ratio += tmp_oil / b_perfcells[oilCompIdx];
const Value tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
volume_ratio += tmp_gas / b_perfcells[gasCompIdx];
} else { // not having gas and oil at the same time
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
volume_ratio += cmix_s[oilCompIdx] / b_perfcells[oilCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
volume_ratio += cmix_s[gasCompIdx] / b_perfcells[gasCompIdx];
}
}
// injecting connections total volumerates at standard conditions
Value cqt_is = cqt_i / volume_ratio;
for (int comp_idx = 0; comp_idx < this->numComponents(); ++comp_idx) {
cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is;
}
} // end for injection perforations
// calculating the perforation solution gas rate and solution oil rates
if (this->isProducer()) {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// TODO: the formulations here remain to be tested with cases with strong crossflow through production wells
// s means standard condition, r means reservoir condition
// q_os = q_or * b_o + rv * q_gr * b_g
// q_gs = q_gr * g_g + rs * q_or * b_o
// d = 1.0 - rs * rv
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
const double d = 1.0 - getValue(rv) * getValue(rs);
// vaporized oil into gas
// rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d
perf_vap_oil_rate = getValue(rv) * (getValue(cq_s[gasCompIdx]) - getValue(rs) * getValue(cq_s[oilCompIdx])) / d;
// dissolved of gas in oil
// rs * q_or * b_o = rs * (q_os - rv * q_gs) / d
perf_dis_gas_rate = getValue(rs) * (getValue(cq_s[oilCompIdx]) - getValue(rv) * getValue(cq_s[gasCompIdx])) / d;
}
}
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
computePerfRateEval(const IntensiveQuantities& int_quants,
const std::vector<EvalWell>& mob_perfcells,
const double Tw,
const int seg,
const int perf,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector<EvalWell>& cq_s,
EvalWell& perf_press,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
{
const auto& fs = int_quants.fluidState();
const EvalWell pressure_cell = this->extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
const EvalWell rs = this->extendEval(fs.Rs());
const EvalWell rv = this->extendEval(fs.Rv());
// not using number_of_phases_ because of solvent
std::vector<EvalWell> b_perfcells(this->num_components_, 0.0);
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
b_perfcells[compIdx] = this->extendEval(fs.invB(phaseIdx));
}
std::vector<EvalWell> cmix_s(this->numComponents(), 0.0);
for (int comp_idx = 0; comp_idx < this->numComponents(); ++comp_idx) {
cmix_s[comp_idx] = this->surfaceVolumeFraction(seg, comp_idx);
}
this->computePerfRate(pressure_cell,
rs,
rv,
b_perfcells,
mob_perfcells,
Tw,
perf,
segment_pressure,
this->segment_densities_[seg],
allow_cf,
cmix_s,
cq_s,
perf_press,
perf_dis_gas_rate,
perf_vap_oil_rate,
deferred_logger);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
computePerfRateScalar(const IntensiveQuantities& int_quants,
const std::vector<Scalar>& mob_perfcells,
const double Tw,
const int seg,
const int perf,
const Scalar& segment_pressure,
const bool& allow_cf,
std::vector<Scalar>& cq_s,
DeferredLogger& deferred_logger) const
{
const auto& fs = int_quants.fluidState();
const Scalar pressure_cell = getValue(fs.pressure(FluidSystem::oilPhaseIdx));
const Scalar rs = getValue(fs.Rs());
const Scalar rv = getValue(fs.Rv());
// not using number_of_phases_ because of solvent
std::vector<Scalar> b_perfcells(this->num_components_, 0.0);
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
b_perfcells[compIdx] = getValue(fs.invB(phaseIdx));
}
std::vector<Scalar> cmix_s(this->numComponents(), 0.0);
for (int comp_idx = 0; comp_idx < this->numComponents(); ++comp_idx) {
cmix_s[comp_idx] = getValue(this->surfaceVolumeFraction(seg, comp_idx));
}
Scalar perf_dis_gas_rate = 0.0;
Scalar perf_vap_oil_rate = 0.0;
Scalar perf_press = 0.0;
this->computePerfRate(pressure_cell,
rs,
rv,
b_perfcells,
mob_perfcells,
Tw,
perf,
segment_pressure,
getValue(this->segment_densities_[seg]),
allow_cf,
cmix_s,
cq_s,
perf_press,
perf_dis_gas_rate,
perf_vap_oil_rate,
deferred_logger);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeSegmentFluidProperties(const Simulator& ebosSimulator)
{
// TODO: the concept of phases and components are rather confusing in this function.
// needs to be addressed sooner or later.
// get the temperature for later use. It is only useful when we are not handling
// thermal related simulation
// basically, it is a single value for all the segments
EvalWell temperature;
EvalWell saltConcentration;
// not sure how to handle the pvt region related to segment
// for the current approach, we use the pvt region of the first perforated cell
// although there are some text indicating using the pvt region of the lowest
// perforated cell
// TODO: later to investigate how to handle the pvt region
int pvt_region_index;
{
// using the first perforated cell
const int cell_idx = this->well_cells_[0];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
saltConcentration = this->extendEval(fs.saltConcentration());
pvt_region_index = fs.pvtRegionIndex();
}
this->MSWEval::computeSegmentFluidProperties(temperature,
saltConcentration,
pvt_region_index);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
getMobilityEval(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob) const
{
// TODO: most of this function, if not the whole function, can be moved to the base class
const int cell_idx = this->well_cells_[perf];
assert (int(mob.size()) == this->num_components_);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = this->saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = this->extendEval(intQuants.mobility(phaseIdx));
}
// if (has_solvent) {
// mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
// }
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = this->extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
}
}
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
getMobilityScalar(const Simulator& ebosSimulator,
const int perf,
std::vector<Scalar>& mob) const
{
// TODO: most of this function, if not the whole function, can be moved to the base class
const int cell_idx = this->well_cells_[perf];
assert (int(mob.size()) == this->num_components_);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = this->saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = getValue(intQuants.mobility(phaseIdx));
}
// if (has_solvent) {
// mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
// }
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Scalar relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = relativePerms[phaseIdx] / getValue(intQuants.fluidState().viscosity(phaseIdx));
}
}
}
template<typename TypeTag>
double
MultisegmentWell<TypeTag>::
getRefDensity() const
{
return this->segment_densities_[0].value();
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
checkOperabilityUnderBHPLimit(const WellState& /*well_state*/, const Simulator& ebos_simulator, DeferredLogger& deferred_logger)
{
const auto& summaryState = ebos_simulator.vanguard().summaryState();
const double bhp_limit = Base::mostStrictBhpFromBhpLimits(summaryState);
// Crude but works: default is one atmosphere.
// TODO: a better way to detect whether the BHP is defaulted or not
const bool bhp_limit_not_defaulted = bhp_limit > 1.5 * unit::barsa;
if ( bhp_limit_not_defaulted || !this->wellHasTHPConstraints(summaryState) ) {
// if the BHP limit is not defaulted or the well does not have a THP limit
// we need to check the BHP limit
double ipr_rate = 0;
for (int p = 0; p < this->number_of_phases_; ++p) {
ipr_rate += this->ipr_a_[p] - this->ipr_b_[p] * bhp_limit;
}
if ( (this->isProducer() && ipr_rate < 0.) || (this->isInjector() && ipr_rate > 0.) ) {
this->operability_status_.operable_under_only_bhp_limit = false;
}
// checking whether running under BHP limit will violate THP limit
if (this->operability_status_.operable_under_only_bhp_limit && this->wellHasTHPConstraints(summaryState)) {
// option 1: calculate well rates based on the BHP limit.
// option 2: stick with the above IPR curve
// we use IPR here
std::vector<double> well_rates_bhp_limit;
computeWellRatesWithBhp(ebos_simulator, bhp_limit, well_rates_bhp_limit, deferred_logger);
const double thp = this->calculateThpFromBhp(well_rates_bhp_limit, bhp_limit, getRefDensity(), deferred_logger);
const double thp_limit = this->getTHPConstraint(summaryState);
if ( (this->isProducer() && thp < thp_limit) || (this->isInjector() && thp > thp_limit) ) {
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
} else {
// defaulted BHP and there is a THP constraint
// default BHP limit is about 1 atm.
// when applied the hydrostatic pressure correction dp,
// most likely we get a negative value (bhp + dp)to search in the VFP table,
// which is not desirable.
// we assume we can operate under defaulted BHP limit and will violate the THP limit
// when operating under defaulted BHP limit.
this->operability_status_.operable_under_only_bhp_limit = true;
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
updateIPR(const Simulator& ebos_simulator, DeferredLogger& deferred_logger) const
{
// TODO: not handling solvent related here for now
// initialize all the values to be zero to begin with
std::fill(this->ipr_a_.begin(), this->ipr_a_.end(), 0.);
std::fill(this->ipr_b_.begin(), this->ipr_b_.end(), 0.);
const int nseg = this->numberOfSegments();
double seg_bhp_press_diff = 0;
double ref_depth = this->ref_depth_;
for (int seg = 0; seg < nseg; ++seg) {
// calculating the perforation rate for each perforation that belongs to this segment
const double segment_depth = this->segmentSet()[seg].depth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth, segment_depth, this->segment_densities_[seg].value(), this->gravity_);
ref_depth = segment_depth;
seg_bhp_press_diff += dp;
for (const int perf : this->segment_perforations_[seg]) {
std::vector<Scalar> mob(this->num_components_, 0.0);
// TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration
getMobilityScalar(ebos_simulator, perf, mob);
const int cell_idx = this->well_cells_[perf];
const auto& int_quantities = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = int_quantities.fluidState();
// the pressure of the reservoir grid block the well connection is in
// pressure difference between the segment and the perforation
const double perf_seg_press_diff = this->gravity_ * this->segment_densities_[seg].value() * this->perforation_segment_depth_diffs_[perf];
// pressure difference between the perforation and the grid cell
const double cell_perf_press_diff = this->cell_perforation_pressure_diffs_[perf];
const double pressure_cell = fs.pressure(FluidSystem::oilPhaseIdx).value();
// calculating the b for the connection
std::vector<double> b_perf(this->num_components_);
for (size_t phase = 0; phase < FluidSystem::numPhases; ++phase) {
if (!FluidSystem::phaseIsActive(phase)) {
continue;
}
const unsigned comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phase));
b_perf[comp_idx] = fs.invB(phase).value();
}
// the pressure difference between the connection and BHP
const double h_perf = cell_perf_press_diff + perf_seg_press_diff + seg_bhp_press_diff;
const double pressure_diff = pressure_cell - h_perf;
// do not take into consideration the crossflow here.
if ( (this->isProducer() && pressure_diff < 0.) || (this->isInjector() && pressure_diff > 0.) ) {
deferred_logger.debug("CROSSFLOW_IPR",
"cross flow found when updateIPR for well " + this->name());
}
// the well index associated with the connection
const double tw_perf = this->well_index_[perf]*ebos_simulator.problem().template rockCompTransMultiplier<double>(int_quantities, cell_idx);
// TODO: there might be some indices related problems here
// phases vs components
// ipr values for the perforation
std::vector<double> ipr_a_perf(this->ipr_a_.size());
std::vector<double> ipr_b_perf(this->ipr_b_.size());
for (int p = 0; p < this->number_of_phases_; ++p) {
const double tw_mob = tw_perf * mob[p] * b_perf[p];
ipr_a_perf[p] += tw_mob * pressure_diff;
ipr_b_perf[p] += tw_mob;
}
// we need to handle the rs and rv when both oil and gas are present
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oil_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const double rs = (fs.Rs()).value();
const double rv = (fs.Rv()).value();
const double dis_gas_a = rs * ipr_a_perf[oil_comp_idx];
const double vap_oil_a = rv * ipr_a_perf[gas_comp_idx];
ipr_a_perf[gas_comp_idx] += dis_gas_a;
ipr_a_perf[oil_comp_idx] += vap_oil_a;
const double dis_gas_b = rs * ipr_b_perf[oil_comp_idx];
const double vap_oil_b = rv * ipr_b_perf[gas_comp_idx];
ipr_b_perf[gas_comp_idx] += dis_gas_b;
ipr_b_perf[oil_comp_idx] += vap_oil_b;
}
for (int p = 0; p < this->number_of_phases_; ++p) {
// TODO: double check the indices here
this->ipr_a_[this->ebosCompIdxToFlowCompIdx(p)] += ipr_a_perf[p];
this->ipr_b_[this->ebosCompIdxToFlowCompIdx(p)] += ipr_b_perf[p];
}
}
}
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
checkOperabilityUnderTHPLimit(const Simulator& ebos_simulator, const WellState& /*well_state*/, DeferredLogger& deferred_logger)
{
const auto& summaryState = ebos_simulator.vanguard().summaryState();
const auto obtain_bhp = this->isProducer() ? computeBhpAtThpLimitProd(ebos_simulator, summaryState, deferred_logger)
: computeBhpAtThpLimitInj(ebos_simulator, summaryState, deferred_logger);
if (obtain_bhp) {
this->operability_status_.can_obtain_bhp_with_thp_limit = true;
const double bhp_limit = Base::mostStrictBhpFromBhpLimits(summaryState);
this->operability_status_.obey_bhp_limit_with_thp_limit = (*obtain_bhp >= bhp_limit);
const double thp_limit = this->getTHPConstraint(summaryState);
if (this->isProducer() && *obtain_bhp < thp_limit) {
const std::string msg = " obtained bhp " + std::to_string(unit::convert::to(*obtain_bhp, unit::barsa))
+ " bars is SMALLER than thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bars as a producer for well " + this->name();
deferred_logger.debug(msg);
}
else if (this->isInjector() && *obtain_bhp > thp_limit) {
const std::string msg = " obtained bhp " + std::to_string(unit::convert::to(*obtain_bhp, unit::barsa))
+ " bars is LARGER than thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bars as a injector for well " + this->name();
deferred_logger.debug(msg);
}
} else {
// Shutting wells that can not find bhp value from thp
// when under THP control
this->operability_status_.can_obtain_bhp_with_thp_limit = false;
this->operability_status_.obey_bhp_limit_with_thp_limit = false;
if (!this->wellIsStopped()) {
const double thp_limit = this->getTHPConstraint(summaryState);
deferred_logger.debug(" could not find bhp value at thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bar for well " + this->name() + ", the well might need to be closed ");
}
}
}
template<typename TypeTag>
bool
MultisegmentWell<TypeTag>::
iterateWellEqWithControl(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped()) return true;
const int max_iter_number = this->param_.max_inner_iter_ms_wells_;
const WellState well_state0 = well_state;
const std::vector<Scalar> residuals0 = this->getWellResiduals(Base::B_avg_, deferred_logger);
std::vector<std::vector<Scalar> > residual_history;
std::vector<double> measure_history;
int it = 0;
// relaxation factor
double relaxation_factor = 1.;
const double min_relaxation_factor = 0.6;
bool converged = false;
int stagnate_count = 0;
bool relax_convergence = false;
for (; it < max_iter_number; ++it, ++debug_cost_counter_) {
assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
const BVectorWell dx_well = mswellhelpers::applyUMFPack(this->duneD_, this->duneDSolver_, this->resWell_);
if (it > this->param_.strict_inner_iter_wells_)
relax_convergence = true;
const auto report = getWellConvergence(well_state, Base::B_avg_, deferred_logger, relax_convergence);
if (report.converged()) {
converged = true;
break;
}
residual_history.push_back(this->getWellResiduals(Base::B_avg_, deferred_logger));
measure_history.push_back(this->getResidualMeasureValue(well_state,
residual_history[it],
this->param_.tolerance_wells_,
this->param_.tolerance_pressure_ms_wells_,
deferred_logger) );
bool is_oscillate = false;
bool is_stagnate = false;
this->detectOscillations(measure_history, it, is_oscillate, is_stagnate);
// TODO: maybe we should have more sophiscated strategy to recover the relaxation factor,
// for example, to recover it to be bigger
if (is_oscillate || is_stagnate) {
// HACK!
std::ostringstream sstr;
if (relaxation_factor == min_relaxation_factor) {
// Still stagnating, terminate iterations if 5 iterations pass.
++stagnate_count;
if (stagnate_count == 6) {
sstr << " well " << this->name() << " observes severe stagnation and/or oscillation. We relax the tolerance and check for convergence. \n";
const auto reportStag = getWellConvergence(well_state, Base::B_avg_, deferred_logger, true);
if (reportStag.converged()) {
converged = true;
sstr << " well " << this->name() << " manages to get converged with relaxed tolerances in " << it << " inner iterations";
deferred_logger.debug(sstr.str());
return converged;
}
}
}
// a factor value to reduce the relaxation_factor
const double reduction_mutliplier = 0.9;
relaxation_factor = std::max(relaxation_factor * reduction_mutliplier, min_relaxation_factor);
// debug output
if (is_stagnate) {
sstr << " well " << this->name() << " observes stagnation in inner iteration " << it << "\n";
}
if (is_oscillate) {
sstr << " well " << this->name() << " observes oscillation in inner iteration " << it << "\n";
}
sstr << " relaxation_factor is " << relaxation_factor << " now\n";
deferred_logger.debug(sstr.str());
}
updateWellState(dx_well, well_state, deferred_logger, relaxation_factor);
initPrimaryVariablesEvaluation();
}
// TODO: we should decide whether to keep the updated well_state, or recover to use the old well_state
if (converged) {
std::ostringstream sstr;
sstr << " Well " << this->name() << " converged in " << it << " inner iterations.";
if (relax_convergence)
sstr << " (A relaxed tolerance was used after "<< this->param_.strict_inner_iter_wells_ << " iterations)";
deferred_logger.debug(sstr.str());
} else {
std::ostringstream sstr;
sstr << " Well " << this->name() << " did not converge in " << it << " inner iterations.";
#define EXTRA_DEBUG_MSW 0
#if EXTRA_DEBUG_MSW
sstr << "***** Outputting the residual history for well " << this->name() << " during inner iterations:";
for (int i = 0; i < it; ++i) {
const auto& residual = residual_history[i];
sstr << " residual at " << i << "th iteration ";
for (const auto& res : residual) {
sstr << " " << res;
}
sstr << " " << measure_history[i] << " \n";
}
#endif
deferred_logger.debug(sstr.str());
}
return converged;
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
assembleWellEqWithoutIteration(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped()) return;
// update the upwinding segments
this->updateUpwindingSegments();
// calculate the fluid properties needed.
computeSegmentFluidProperties(ebosSimulator);
// clear all entries
this->duneB_ = 0.0;
this->duneC_ = 0.0;
this->duneD_ = 0.0;
this->resWell_ = 0.0;
this->duneDSolver_.reset();
auto& ws = well_state.well(this->index_of_well_);
ws.dissolved_gas_rate = 0;
ws.vaporized_oil_rate = 0;
// for the black oil cases, there will be four equations,
// the first three of them are the mass balance equations, the last one is the pressure equations.
//
// but for the top segment, the pressure equation will be the well control equation, and the other three will be the same.
const bool allow_cf = this->getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
const int nseg = this->numberOfSegments();
for (int seg = 0; seg < nseg; ++seg) {
// calculating the accumulation term
// TODO: without considering the efficiencty factor for now
{
const EvalWell segment_surface_volume = getSegmentSurfaceVolume(ebosSimulator, seg);
// Add a regularization_factor to increase the accumulation term
// This will make the system less stiff and help convergence for
// difficult cases
const Scalar regularization_factor = this->param_.regularization_factor_ms_wells_;
// for each component
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * this->surfaceVolumeFraction(seg, comp_idx)
- segment_fluid_initial_[seg][comp_idx]) / dt;
this->resWell_[seg][comp_idx] += accumulation_term.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
this->duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
}
}
}
// considering the contributions due to flowing out from the segment
{
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell segment_rate = this->getSegmentRateUpwinding(seg, comp_idx) * this->well_efficiency_factor_;
const int seg_upwind = this->upwinding_segments_[seg];
// segment_rate contains the derivatives with respect to GTotal in seg,
// and WFrac and GFrac in seg_upwind
this->resWell_[seg][comp_idx] -= segment_rate.value();
this->duneD_[seg][seg][comp_idx][GTotal] -= segment_rate.derivative(GTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
this->duneD_[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
this->duneD_[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
}
}
// considering the contributions from the inlet segments
{
for (const int inlet : this->segment_inlets_[seg]) {
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell inlet_rate = this->getSegmentRateUpwinding(inlet, comp_idx) * this->well_efficiency_factor_;
const int inlet_upwind = this->upwinding_segments_[inlet];
// inlet_rate contains the derivatives with respect to GTotal in inlet,
// and WFrac and GFrac in inlet_upwind
this->resWell_[seg][comp_idx] += inlet_rate.value();
this->duneD_[seg][inlet][comp_idx][GTotal] += inlet_rate.derivative(GTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
this->duneD_[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
this->duneD_[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
}
}
}
// calculating the perforation rate for each perforation that belongs to this segment
const EvalWell seg_pressure = this->getSegmentPressure(seg);
auto& perf_data = ws.perf_data;
auto& perf_rates = perf_data.phase_rates;
auto& perf_press_state = perf_data.pressure;
for (const int perf : this->segment_perforations_[seg]) {
const int cell_idx = this->well_cells_[perf];
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<EvalWell> mob(this->num_components_, 0.0);
getMobilityEval(ebosSimulator, perf, mob);
const double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(int_quants, cell_idx);
const double Tw = this->well_index_[perf] * trans_mult;
std::vector<EvalWell> cq_s(this->num_components_, 0.0);
EvalWell perf_press;
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRateEval(int_quants, mob, Tw, seg, perf, seg_pressure, allow_cf, cq_s, perf_press, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
// updating the solution gas rate and solution oil rate
if (this->isProducer()) {
ws.dissolved_gas_rate += perf_dis_gas_rate;
ws.vaporized_oil_rate += perf_vap_oil_rate;
}
// store the perf pressure and rates
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
perf_rates[perf*this->number_of_phases_ + this->ebosCompIdxToFlowCompIdx(comp_idx)] = cq_s[comp_idx].value();
}
perf_press_state[perf] = perf_press.value();
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[comp_idx] * this->well_efficiency_factor_;
this->connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective);
// subtract sum of phase fluxes in the well equations.
this->resWell_[seg][comp_idx] += cq_s_effective.value();
// assemble the jacobians
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
this->duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // intput in transformed matrix
// the index name for the D should be eq_idx / pv_idx
this->duneD_[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
}
for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
this->duneB_[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
}
}
}
// the fourth dequation, the pressure drop equation
if (seg == 0) { // top segment, pressure equation is the control equation
const auto& summaryState = ebosSimulator.vanguard().summaryState();
const Schedule& schedule = ebosSimulator.vanguard().schedule();
this->assembleControlEq(well_state,
group_state,
schedule,
summaryState,
inj_controls,
prod_controls,
getRefDensity(),
deferred_logger);
} else {
const UnitSystem& unit_system = ebosSimulator.vanguard().eclState().getDeckUnitSystem();
this->assemblePressureEq(seg, unit_system, well_state, deferred_logger);
}
}
}
template<typename TypeTag>
bool
MultisegmentWell<TypeTag>::
openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const
{
return !this->getAllowCrossFlow() && allDrawDownWrongDirection(ebos_simulator);
}
template<typename TypeTag>
bool
MultisegmentWell<TypeTag>::
allDrawDownWrongDirection(const Simulator& ebos_simulator) const
{
bool all_drawdown_wrong_direction = true;
const int nseg = this->numberOfSegments();
for (int seg = 0; seg < nseg; ++seg) {
const EvalWell segment_pressure = this->getSegmentPressure(seg);
for (const int perf : this->segment_perforations_[seg]) {
const int cell_idx = this->well_cells_[perf];
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
// pressure difference between the segment and the perforation
const EvalWell perf_seg_press_diff = this->gravity_ * this->segment_densities_[seg] * this->perforation_segment_depth_diffs_[perf];
// pressure difference between the perforation and the grid cell
const double cell_perf_press_diff = this->cell_perforation_pressure_diffs_[perf];
const double pressure_cell = (fs.pressure(FluidSystem::oilPhaseIdx)).value();
const double perf_press = pressure_cell - cell_perf_press_diff;
// Pressure drawdown (also used to determine direction of flow)
// TODO: not 100% sure about the sign of the seg_perf_press_diff
const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff);
// for now, if there is one perforation can produce/inject in the correct
// direction, we consider this well can still produce/inject.
// TODO: it can be more complicated than this to cause wrong-signed rates
if ( (drawdown < 0. && this->isInjector()) ||
(drawdown > 0. && this->isProducer()) ) {
all_drawdown_wrong_direction = false;
break;
}
}
}
return all_drawdown_wrong_direction;
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
updateWaterThroughput(const double /*dt*/, WellState& /*well_state*/) const
{
}
template<typename TypeTag>
typename MultisegmentWell<TypeTag>::EvalWell
MultisegmentWell<TypeTag>::
getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const
{
EvalWell temperature;
EvalWell saltConcentration;
int pvt_region_index;
{
// using the pvt region of first perforated cell
// TODO: it should be a member of the WellInterface, initialized properly
const int cell_idx = this->well_cells_[0];
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
saltConcentration = this->extendEval(fs.saltConcentration());
pvt_region_index = fs.pvtRegionIndex();
}
return this->MSWEval::getSegmentSurfaceVolume(temperature,
saltConcentration,
pvt_region_index,
seg_idx);
}
template<typename TypeTag>
std::optional<double>
MultisegmentWell<TypeTag>::
computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
// Make the frates() function.
auto frates = [this, &ebos_simulator, &deferred_logger](const double bhp) {
// Not solving the well equations here, which means we are
// calculating at the current Fg/Fw values of the
// well. This does not matter unless the well is
// crossflowing, and then it is likely still a good
// approximation.
std::vector<double> rates(3);
computeWellRatesWithBhp(ebos_simulator, bhp, rates, deferred_logger);
return rates;
};
auto bhpAtLimit = this->MultisegmentWellGeneric<Scalar>::
computeBhpAtThpLimitProd(frates,
summary_state,
maxPerfPress(ebos_simulator),
getRefDensity(),
deferred_logger);
if(bhpAtLimit)
return bhpAtLimit;
auto fratesIter = [this, &ebos_simulator, &deferred_logger](const double bhp) {
// Solver the well iterations to see if we are
// able to get a solution with an update
// solution
std::vector<double> rates(3);
computeWellRatesWithBhpIterations(ebos_simulator, bhp, rates, deferred_logger);
return rates;
};
return this->MultisegmentWellGeneric<Scalar>::
computeBhpAtThpLimitProd(fratesIter,
summary_state,
maxPerfPress(ebos_simulator),
getRefDensity(),
deferred_logger);
}
template<typename TypeTag>
std::optional<double>
MultisegmentWell<TypeTag>::
computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
// Make the frates() function.
auto frates = [this, &ebos_simulator, &deferred_logger](const double bhp) {
// Not solving the well equations here, which means we are
// calculating at the current Fg/Fw values of the
// well. This does not matter unless the well is
// crossflowing, and then it is likely still a good
// approximation.
std::vector<double> rates(3);
computeWellRatesWithBhp(ebos_simulator, bhp, rates, deferred_logger);
return rates;
};
auto bhpAtLimit = this->MultisegmentWellGeneric<Scalar>::
computeBhpAtThpLimitInj(frates,
summary_state,
getRefDensity(),
deferred_logger);
if(bhpAtLimit)
return bhpAtLimit;
auto fratesIter = [this, &ebos_simulator, &deferred_logger](const double bhp) {
// Solver the well iterations to see if we are
// able to get a solution with an update
// solution
std::vector<double> rates(3);
computeWellRatesWithBhpIterations(ebos_simulator, bhp, rates, deferred_logger);
return rates;
};
return this->MultisegmentWellGeneric<Scalar>::
computeBhpAtThpLimitInj(fratesIter, summary_state, getRefDensity(), deferred_logger);
}
template<typename TypeTag>
double
MultisegmentWell<TypeTag>::
maxPerfPress(const Simulator& ebos_simulator) const
{
double max_pressure = 0.0;
const int nseg = this->numberOfSegments();
for (int seg = 0; seg < nseg; ++seg) {
for (const int perf : this->segment_perforations_[seg]) {
const int cell_idx = this->well_cells_[perf];
const auto& int_quants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = int_quants.fluidState();
double pressure_cell = fs.pressure(FluidSystem::oilPhaseIdx).value();
max_pressure = std::max(max_pressure, pressure_cell);
}
}
return max_pressure;
}
template<typename TypeTag>
std::vector<double>
MultisegmentWell<TypeTag>::
computeCurrentWellRates(const Simulator& ebosSimulator,
DeferredLogger& deferred_logger) const
{
// Calculate the rates that follow from the current primary variables.
std::vector<Scalar> well_q_s(this->num_components_, 0.0);
const bool allow_cf = this->getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
const int nseg = this->numberOfSegments();
for (int seg = 0; seg < nseg; ++seg) {
// calculating the perforation rate for each perforation that belongs to this segment
const Scalar seg_pressure = getValue(this->getSegmentPressure(seg));
for (const int perf : this->segment_perforations_[seg]) {
const int cell_idx = this->well_cells_[perf];
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<Scalar> mob(this->num_components_, 0.0);
getMobilityScalar(ebosSimulator, perf, mob);
const double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(int_quants, cell_idx);
const double Tw = this->well_index_[perf] * trans_mult;
std::vector<Scalar> cq_s(this->num_components_, 0.0);
computePerfRateScalar(int_quants, mob, Tw, seg, perf, seg_pressure, allow_cf, cq_s, deferred_logger);
for (int comp = 0; comp < this->num_components_; ++comp) {
well_q_s[comp] += cq_s[comp];
}
}
}
return well_q_s;
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeConnLevelProdInd(const typename MultisegmentWell<TypeTag>::FluidState& fs,
const std::function<double(const double)>& connPICalc,
const std::vector<Scalar>& mobility,
double* connPI) const
{
const auto& pu = this->phaseUsage();
const int np = this->number_of_phases_;
for (int p = 0; p < np; ++p) {
// Note: E100's notion of PI value phase mobility includes
// the reciprocal FVF.
const auto connMob =
mobility[ this->flowPhaseToEbosCompIdx(p) ]
* fs.invB(this->flowPhaseToEbosPhaseIdx(p)).value();
connPI[p] = connPICalc(connMob);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
{
const auto io = pu.phase_pos[Oil];
const auto ig = pu.phase_pos[Gas];
const auto vapoil = connPI[ig] * fs.Rv().value();
const auto disgas = connPI[io] * fs.Rs().value();
connPI[io] += vapoil;
connPI[ig] += disgas;
}
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
computeConnLevelInjInd(const typename MultisegmentWell<TypeTag>::FluidState& fs,
const Phase preferred_phase,
const std::function<double(const double)>& connIICalc,
const std::vector<Scalar>& mobility,
double* connII,
DeferredLogger& deferred_logger) const
{
// Assumes single phase injection
const auto& pu = this->phaseUsage();
auto phase_pos = 0;
if (preferred_phase == Phase::GAS) {
phase_pos = pu.phase_pos[Gas];
}
else if (preferred_phase == Phase::OIL) {
phase_pos = pu.phase_pos[Oil];
}
else if (preferred_phase == Phase::WATER) {
phase_pos = pu.phase_pos[Water];
}
else {
OPM_DEFLOG_THROW(NotImplemented,
"Unsupported Injector Type ("
<< static_cast<int>(preferred_phase)
<< ") for well " << this->name()
<< " during connection I.I. calculation",
deferred_logger);
}
const Scalar mt = std::accumulate(mobility.begin(), mobility.end(), 0.0);
connII[phase_pos] = connIICalc(mt * fs.invB(this->flowPhaseToEbosPhaseIdx(phase_pos)).value());
}
} // namespace Opm