opm-simulators/opm/autodiff/WellStateFullyImplicitBlackoil.hpp
Robert Kloefkorn 82658c92d0 Removal of SimulatorFullyImplicitBlackoilOutputEbos.{h,c}pp.
All simulators now use SimulationDataContainer to store intermediate data that
is passed to the output Solution container. This is in cases not the most
efficient way, but it's unified to avoid errors from code duplication.
2017-02-09 16:57:45 +01:00

262 lines
11 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
#include <string>
#include <utility>
#include <map>
#include <algorithm>
#include <array>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
: public WellState
{
typedef WellState BaseType;
public:
typedef BaseType :: WellMapType WellMapType;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
template <class State, class PrevState>
void init(const Wells* wells, const State& state, const PrevState& prevState)
{
// call init on base class
BaseType :: init(wells, state);
// if there are no well, do nothing in init
if (wells == 0) {
return;
}
const int nw = wells->number_of_wells;
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const int np = wells->number_of_phases;
const int nperf = wells->well_connpos[nw];
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_stopped(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
perfPress()[perf] = state.pressure()[wells->well_cells[perf]];
}
}
}
// Initialize current_controls_.
// The controls set in the Wells object are treated as defaults,
// and also used for initial values.
current_controls_.resize(nw);
for (int w = 0; w < nw; ++w) {
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
}
well_potentials_.clear();
well_potentials_.resize(nperf * np, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// bhp
bhp()[ newIndex ] = prevState.bhp()[ oldIndex ];
// wellrates
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState.wellRates()[ oldidx ];
}
// perfPhaseRates
int oldPerf_idx = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
// copy perforation rates when the number of perforations is equal,
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf = oldPerf_idx *np;
for (int perf = wells->well_connpos[ newIndex ]*np;
perf < wells->well_connpos[ newIndex + 1]*np; ++perf, ++oldPerf )
{
perfPhaseRates()[ perf ] = prevState.perfPhaseRates()[ oldPerf ];
}
} else {
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfPress()[ perf ] = prevState.perfPress()[ oldPerf_idx ];
}
}
// currentControls
const int old_control_index = prevState.currentControls()[ oldIndex ];
if (old_control_index < well_controls_get_num(wells->ctrls[w])) {
// If the set of controls have changed, this may not be identical
// to the last control, but it must be a valid control.
currentControls()[ newIndex ] = old_control_index;
} else {
assert(well_controls_get_num(wells->ctrls[w]) > 0);
currentControls()[ newIndex ] = 0;
}
}
}
}
}
template <class State>
void resize(const Wells* wells, const State& state ) {
const WellStateFullyImplicitBlackoil dummy_state{}; // Init with an empty previous state only resizes
init(wells, state, dummy_state) ;
}
template <class State>
void resize(const Wells* wells, const State& state, const PhaseUsage& ) {
resize( wells, state );
}
/// One rate per phase and well connection.
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per well.
std::vector<int>& currentControls() { return current_controls_; }
const std::vector<int>& currentControls() const { return current_controls_; }
/// One rate per phase and well connection.
std::vector<double>& wellPotentials() { return well_potentials_; }
const std::vector<double>& wellPotentials() const { return well_potentials_; }
data::Wells report(const PhaseUsage &pu) const override {
data::Wells res = WellState::report(pu);
const int nw = this->numWells();
if( nw == 0 ) return res;
const int np = pu.num_phases;
using rt = data::Rates::opt;
std::vector< rt > phs( np );
if( pu.phase_used[BlackoilPhases::Aqua] ) {
phs.at( pu.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( pu.phase_used[BlackoilPhases::Liquid] ) {
phs.at( pu.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
phs.at( pu.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
/* this is a reference or example on **how** to convert from
* WellState to something understood by opm-output. it is intended
* to be properly implemented and maintained as a part of
* simulators, as it relies on simulator internals, details and
* representations.
*/
for( const auto& wt : this->wellMap() ) {
const auto w = wt.second[ 0 ];
auto& well = res.at( wt.first );
well.control = this->currentControls()[ w ];
int local_comp_index = 0;
for( auto& comp : well.completions ) {
const auto rates = this->perfPhaseRates().begin()
+ (np * wt.second[ 1 ])
+ (np * local_comp_index);
++local_comp_index;
for( int i = 0; i < np; ++i ) {
comp.rates.set( phs[ i ], *(rates + i) );
}
}
assert(local_comp_index == this->wells_->well_connpos[ w + 1 ] - this->wells_->well_connpos[ w ]);
}
return res;
}
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;
std::vector<double> well_potentials_;
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED