mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 16:31:58 -06:00
3422e18583
If enableTemperature and --enable-opm-restart-file=true the temperature is passed to or read from the restart file
1595 lines
74 KiB
C++
1595 lines
74 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <ebos/eclgenericoutputblackoilmodule.hh>
|
|
#include <ebos/eclalternativeblackoilindices.hh>
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
|
|
|
|
#include <opm/output/data/Solution.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
|
|
#include <opm/parser/eclipse/Units/Units.hpp>
|
|
|
|
#include <cassert>
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
|
|
namespace {
|
|
|
|
std::string EclString(Opm::Inplace::Phase phase) {
|
|
switch(phase) {
|
|
case Opm::Inplace::Phase::WATER: return "WIP";
|
|
case Opm::Inplace::Phase::OIL: return "OIP";
|
|
case Opm::Inplace::Phase::GAS: return "GIP";
|
|
case Opm::Inplace::Phase::OilInLiquidPhase: return "OIPL";
|
|
case Opm::Inplace::Phase::OilInGasPhase: return "OIPG";
|
|
case Opm::Inplace::Phase::GasInLiquidPhase: return "GIPL";
|
|
case Opm::Inplace::Phase::GasInGasPhase: return "GIPG";
|
|
case Opm::Inplace::Phase::PoreVolume: return "RPV";
|
|
default: throw std::logic_error("Phase not recognized");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
namespace Opm {
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
EclGenericOutputBlackoilModule(const EclipseState& eclState,
|
|
const Schedule& schedule,
|
|
const SummaryConfig& summaryConfig,
|
|
const SummaryState& summaryState,
|
|
bool enableEnergy,
|
|
bool enableTemperature,
|
|
bool enableSolvent,
|
|
bool enablePolymer,
|
|
bool enableFoam,
|
|
bool enableBrine,
|
|
bool enableExtbo)
|
|
: eclState_(eclState)
|
|
, schedule_(schedule)
|
|
, summaryConfig_(summaryConfig)
|
|
, summaryState_(summaryState)
|
|
, enableEnergy_(enableEnergy)
|
|
, enableTemperature_(enableTemperature)
|
|
, enableSolvent_(enableSolvent)
|
|
, enablePolymer_(enablePolymer)
|
|
, enableFoam_(enableFoam)
|
|
, enableBrine_(enableBrine)
|
|
, enableExtbo_(enableExtbo)
|
|
{
|
|
const auto& fp = eclState_.fieldProps();
|
|
|
|
this->regions_["FIPNUM"] = fp.get_int("FIPNUM");
|
|
for (const auto& region : summaryConfig_.fip_regions())
|
|
this->regions_[region] = fp.get_int(region);
|
|
|
|
this->RPRNodes_ = summaryConfig_.keywords("RPR*");
|
|
this->RPRPNodes_ = summaryConfig_.keywords("RPRP*");
|
|
|
|
for (const auto& phase : Inplace::phases()) {
|
|
std::string key_pattern = "R" + EclString(phase) + "*";
|
|
this->regionNodes_[phase] = summaryConfig_.keywords(key_pattern);
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputCumLog(size_t reportStepNum, const bool substep, bool forceDisableCumOutput)
|
|
{
|
|
if (!substep) {
|
|
ScalarBuffer tmp_values(WellCumDataType::numWCValues, 0.0);
|
|
StringBuffer tmp_names(WellCumDataType::numWCNames, "");
|
|
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
|
|
|
|
const auto& st = summaryState_;
|
|
for (const auto& gname: schedule_.groupNames()) {
|
|
|
|
auto gName = static_cast<std::string>(gname);
|
|
auto get = [&st, &gName](const std::string& vector)
|
|
{
|
|
const auto key = vector + ':' + gName;
|
|
|
|
return st.has(key) ? st.get(key) : 0.0;
|
|
};
|
|
|
|
tmp_names[0] = gname;
|
|
|
|
tmp_values[2] = get("GOPT"); //WellCumDataType::OilProd
|
|
tmp_values[3] = get("GWPT"); //WellCumDataType::WaterProd
|
|
tmp_values[4] = get("GGPT"); //WellCumDataType::GasProd
|
|
tmp_values[5] = get("GVPT");//WellCumDataType::FluidResVolProd
|
|
tmp_values[6] = get("GOIT"); //WellCumDataType::OilInj
|
|
tmp_values[7] = get("GWIT"); //WellCumDataType::WaterInj
|
|
tmp_values[8] = get("GGIT"); //WellCumDataType::GasInj
|
|
tmp_values[9] = get("GVIT");//WellCumDataType::FluidResVolInj
|
|
|
|
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
|
|
}
|
|
|
|
for (const auto& wname : schedule_.wellNames(reportStepNum)) {
|
|
|
|
// don't bother with wells not on this process
|
|
if (isDefunctParallelWell(wname)) {
|
|
continue;
|
|
}
|
|
|
|
const auto& well = schedule_.getWell(wname, reportStepNum);
|
|
|
|
tmp_names[0] = wname; //WellCumDataType::WellName
|
|
|
|
auto wName = static_cast<std::string>(wname);
|
|
auto get = [&st, &wName](const std::string& vector)
|
|
{
|
|
const auto key = vector + ':' + wName;
|
|
|
|
return st.has(key) ? st.get(key) : 0.0;
|
|
};
|
|
|
|
if (well.isInjector()) {
|
|
|
|
const auto& controls = well.injectionControls(st);
|
|
const auto ctlMode = controls.cmode;
|
|
const auto injType = controls.injector_type;
|
|
using CMode = ::Opm::Well::InjectorCMode;
|
|
using WType = ::Opm::InjectorType;
|
|
|
|
auto ftype = [](const auto wtype) -> std::string
|
|
{
|
|
switch (wtype) {
|
|
case WType::OIL: return "Oil";
|
|
case WType::WATER: return "Wat";
|
|
case WType::GAS: return "Gas";
|
|
case WType::MULTI: return "Multi";
|
|
default:
|
|
{
|
|
return "";
|
|
}
|
|
}
|
|
};
|
|
|
|
auto fctl = [](const auto wmctl) -> std::string
|
|
{
|
|
switch (wmctl) {
|
|
case CMode::RATE: return "RATE";
|
|
case CMode::RESV: return "RESV";
|
|
case CMode::THP: return "THP";
|
|
case CMode::BHP: return "BHP";
|
|
case CMode::GRUP: return "GRUP";
|
|
default:
|
|
{
|
|
return "";
|
|
}
|
|
}
|
|
};
|
|
|
|
tmp_names[1] = "INJ"; //WellCumDataType::WellType
|
|
const auto flowctl = fctl(ctlMode);
|
|
if (flowctl == "RATE") //WellCumDataType::WellCTRL
|
|
{
|
|
const auto flowtype = ftype(injType);
|
|
if(flowtype == "Oil"){ tmp_names[2] = "ORAT"; }
|
|
else if(flowtype == "Wat"){ tmp_names[2] = "WRAT"; }
|
|
else if(flowtype == "Gas"){ tmp_names[2] = "GRAT"; }
|
|
}
|
|
else
|
|
{
|
|
tmp_names[2] = flowctl;
|
|
}
|
|
|
|
}
|
|
else if (well.isProducer()) {
|
|
|
|
const auto& controls = well.productionControls(st);
|
|
using CMode = ::Opm::Well::ProducerCMode;
|
|
|
|
auto fctl = [](const auto wmctl) -> std::string
|
|
{
|
|
switch (wmctl) {
|
|
case CMode::ORAT: return "ORAT";
|
|
case CMode::WRAT: return "WRAT";
|
|
case CMode::GRAT: return "GRAT";
|
|
case CMode::LRAT: return "LRAT";
|
|
case CMode::RESV: return "RESV";
|
|
case CMode::THP: return "THP";
|
|
case CMode::BHP: return "BHP";
|
|
case CMode::CRAT: return "CRAT";
|
|
case CMode::GRUP: return "GRUP";
|
|
default:
|
|
{
|
|
return "none";
|
|
}
|
|
}
|
|
};
|
|
tmp_names[1] = "PROD"; //WellProdDataType::CTRLMode
|
|
tmp_names[2] = fctl(controls.cmode); //WellProdDataType::CTRLMode
|
|
}
|
|
|
|
tmp_values[0] = well.getHeadI() + 1; //WellCumDataType::wellLocationi
|
|
tmp_values[1] = well.getHeadJ() + 1; //WellCumDataType::wellLocationj
|
|
tmp_values[2] = get("WOPT"); //WellCumDataType::OilProd
|
|
tmp_values[3] = get("WWPT"); //WellCumDataType::WaterProd
|
|
tmp_values[4] = get("WGPT"); //WellCumDataType::GasProd
|
|
tmp_values[5] = get("WVPT");//WellCumDataType::FluidResVolProd
|
|
tmp_values[6] = get("WOIT"); //WellCumDataType::OilInj
|
|
tmp_values[7] = get("WWIT"); //WellCumDataType::WaterInj
|
|
tmp_values[8] = get("WGIT"); //WellCumDataType::GasInj
|
|
tmp_values[9] = get("WVIT");//WellCumDataType::FluidResVolInj
|
|
|
|
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputProdLog(size_t reportStepNum,
|
|
const bool substep,
|
|
bool forceDisableProdOutput)
|
|
{
|
|
if (!substep) {
|
|
ScalarBuffer tmp_values(WellProdDataType::numWPValues, 0.0);
|
|
StringBuffer tmp_names(WellProdDataType::numWPNames, "");
|
|
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
|
|
|
|
const auto& st = summaryState_;
|
|
|
|
for (const auto& gname: schedule_.groupNames()) {
|
|
|
|
auto gName = static_cast<std::string>(gname);
|
|
auto get = [&st, &gName](const std::string& vector)
|
|
{
|
|
const auto key = vector + ':' + gName;
|
|
|
|
return st.has(key) ? st.get(key) : 0.0;
|
|
};
|
|
|
|
tmp_names[0] = gname;
|
|
|
|
tmp_values[2] = get("GOPR"); //WellProdDataType::OilRate
|
|
tmp_values[3] = get("GWPR"); //WellProdDataType::WaterRate
|
|
tmp_values[4] = get("GGPR"); //WellProdDataType::GasRate
|
|
tmp_values[5] = get("GVPR"); //WellProdDataType::FluidResVol
|
|
tmp_values[6] = get("GWCT"); //WellProdDataType::WaterCut
|
|
tmp_values[7] = get("GGOR"); //WellProdDataType::GasOilRatio
|
|
tmp_values[8] = get("GWPR")/get("GGPR"); //WellProdDataType::WaterGasRatio
|
|
|
|
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
|
|
}
|
|
|
|
for (const auto& wname: schedule_.wellNames(reportStepNum)) {
|
|
|
|
// don't bother with wells not on this process
|
|
if (isDefunctParallelWell(wname)) {
|
|
continue;
|
|
}
|
|
|
|
const auto& well = schedule_.getWell(wname, reportStepNum);
|
|
|
|
// Ignore injector wells
|
|
if (well.isInjector()){
|
|
continue;
|
|
}
|
|
|
|
tmp_names[0] = wname;//WellProdDataType::WellName
|
|
|
|
|
|
auto wName = static_cast<std::string>(wname);
|
|
auto get = [&st, &wName](const std::string& vector)
|
|
{
|
|
const auto key = vector + ':' + wName;
|
|
|
|
return st.has(key) ? st.get(key) : 0.0;
|
|
};
|
|
|
|
const auto& controls = well.productionControls(st);
|
|
using CMode = Well::ProducerCMode;
|
|
|
|
auto fctl = [](const auto wmctl) -> std::string
|
|
{
|
|
switch (wmctl) {
|
|
case CMode::ORAT: return "ORAT";
|
|
case CMode::WRAT: return "WRAT";
|
|
case CMode::GRAT: return "GRAT";
|
|
case CMode::LRAT: return "LRAT";
|
|
case CMode::RESV: return "RESV";
|
|
case CMode::THP: return "THP";
|
|
case CMode::BHP: return "BHP";
|
|
case CMode::CRAT: return "CRate";
|
|
case CMode::GRUP: return "GRUP";
|
|
default:
|
|
{
|
|
return "none";
|
|
}
|
|
}
|
|
};
|
|
|
|
tmp_names[1] = fctl(controls.cmode); //WellProdDataType::CTRLMode
|
|
|
|
tmp_values[0] = well.getHeadI() + 1;//WellProdDataType::WellLocationi
|
|
tmp_values[1] = well.getHeadJ() + 1;//WellProdDataType::WellLocationj
|
|
tmp_values[2] = get("WOPR"); //WellProdDataType::OilRate
|
|
tmp_values[3] = get("WWPR"); //WellProdDataType::WaterRate
|
|
tmp_values[4] = get("WGPR"); //WellProdDataType::GasRate
|
|
tmp_values[5] = get("WVPR"); //WellProdDataType::FluidResVol
|
|
tmp_values[6] = get("WWCT"); //WellProdDataType::WaterCut
|
|
tmp_values[7] = get("WGOR"); //WellProdDataType::GasOilRatio
|
|
tmp_values[8] = get("WWPR")/get("WGPR"); //WellProdDataType::WaterGasRatio
|
|
tmp_values[9] = get("WBHP"); //WellProdDataType::BHP
|
|
tmp_values[10] = get("WTHP"); //WellProdDataType::THP
|
|
//tmp_values[11] = 0; //WellProdDataType::SteadyStatePI //
|
|
|
|
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputInjLog(size_t reportStepNum, const bool substep, bool forceDisableInjOutput)
|
|
{
|
|
if (!substep) {
|
|
ScalarBuffer tmp_values(WellInjDataType::numWIValues, 0.0);
|
|
StringBuffer tmp_names(WellInjDataType::numWINames, "");
|
|
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
|
|
|
|
const auto& st = summaryState_;
|
|
for (const auto& gname: schedule_.groupNames()) {
|
|
|
|
auto gName = static_cast<std::string>(gname);
|
|
auto get = [&st, &gName](const std::string& vector)
|
|
{
|
|
const auto key = vector + ':' + gName;
|
|
|
|
return st.has(key) ? st.get(key) : 0.0;
|
|
};
|
|
|
|
tmp_names[0] = gname;
|
|
|
|
tmp_values[2] = get("GOIR");//WellInjDataType::OilRate
|
|
tmp_values[3] = get("GWIR"); //WellInjDataType::WaterRate
|
|
tmp_values[4] = get("GGIR"); //WellInjDataType::GasRate
|
|
tmp_values[5] = get("GVIR");//WellInjDataType::FluidResVol
|
|
|
|
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
|
|
}
|
|
|
|
for (const auto& wname: schedule_.wellNames(reportStepNum)) {
|
|
|
|
// don't bother with wells not on this process
|
|
if (isDefunctParallelWell(wname)) {
|
|
continue;
|
|
}
|
|
|
|
const auto& well = schedule_.getWell(wname, reportStepNum);
|
|
|
|
// Ignore Producer wells
|
|
if (well.isProducer()){
|
|
continue;
|
|
}
|
|
|
|
tmp_names[0] = wname; //WellInjDataType::WellName
|
|
|
|
auto wName = static_cast<std::string>(wname);
|
|
auto get = [&st, &wName](const std::string& vector)
|
|
{
|
|
const auto key = vector + ':' + wName;
|
|
|
|
return st.has(key) ? st.get(key) : 0.0;
|
|
};
|
|
|
|
const auto& controls = well.injectionControls(st);
|
|
const auto ctlMode = controls.cmode;
|
|
const auto injType = controls.injector_type;
|
|
using CMode = Well::InjectorCMode;
|
|
using WType = InjectorType;
|
|
|
|
auto ftype = [](const auto wtype) -> std::string
|
|
{
|
|
switch (wtype) {
|
|
case WType::OIL: return "Oil";
|
|
case WType::WATER: return "Wat";
|
|
case WType::GAS: return "Gas";
|
|
case WType::MULTI: return "Multi";
|
|
default:
|
|
{
|
|
return "";
|
|
}
|
|
}
|
|
};
|
|
|
|
auto fctl = [](const auto wmctl) -> std::string
|
|
{
|
|
switch (wmctl) {
|
|
case CMode::RATE: return "RATE";
|
|
case CMode::RESV: return "RESV";
|
|
case CMode::THP: return "THP";
|
|
case CMode::BHP: return "BHP";
|
|
case CMode::GRUP: return "GRUP";
|
|
default:
|
|
{
|
|
return "";
|
|
}
|
|
}
|
|
};
|
|
|
|
const auto flowtype = ftype(injType);
|
|
const auto flowctl = fctl(ctlMode);
|
|
if(flowtype == "Oil") //WellInjDataType::CTRLModeOil
|
|
{
|
|
if (flowctl == "RATE"){ tmp_names[1] = "ORAT"; }
|
|
else { tmp_names[1] = flowctl; }
|
|
}
|
|
else if (flowtype == "Wat") //WellInjDataType::CTRLModeWat
|
|
{
|
|
if (flowctl == "RATE"){ tmp_names[3] = "WRAT"; }
|
|
else { tmp_names[2] = flowctl; }
|
|
}
|
|
else if (flowtype == "Gas") //WellInjDataType::CTRLModeGas
|
|
{
|
|
if (flowctl == "RATE"){ tmp_names[3] = "GRAT"; }
|
|
else { tmp_names[3] = flowctl; }
|
|
}
|
|
|
|
tmp_values[0] = well.getHeadI() + 1; //WellInjDataType::wellLocationi
|
|
tmp_values[1] = well.getHeadJ() + 1; //WellInjDataType::wellLocationj
|
|
tmp_values[2] = get("WOIR"); //WellInjDataType::OilRate
|
|
tmp_values[3] = get("WWIR"); //WellInjDataType::WaterRate
|
|
tmp_values[4] = get("WGIR"); //WellInjDataType::GasRate
|
|
tmp_values[5] = get("WVIR");//WellInjDataType::FluidResVol
|
|
tmp_values[6] = get("WBHP"); //WellInjDataType::BHP
|
|
tmp_values[7] = get("WTHP"); //WellInjDataType::THP
|
|
//tmp_values[8] = 0; //WellInjDataType::SteadyStateII
|
|
|
|
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputFipLog(std::map<std::string, double>& miscSummaryData,
|
|
std::map<std::string, std::vector<double>>& regionData,
|
|
const bool substep,
|
|
const Comm& comm)
|
|
{
|
|
auto inplace = this->accumulateRegionSums(comm);
|
|
if (comm.rank() != 0)
|
|
return inplace;
|
|
|
|
updateSummaryRegionValues(inplace,
|
|
miscSummaryData,
|
|
regionData);
|
|
|
|
if (!substep)
|
|
outputFipLogImpl(inplace);
|
|
|
|
return inplace;
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
addRftDataToWells(data::Wells& wellDatas, size_t reportStepNum)
|
|
{
|
|
const auto& rft_config = schedule_[reportStepNum].rft_config();
|
|
for (const auto& well: schedule_.getWells(reportStepNum)) {
|
|
|
|
// don't bother with wells not on this process
|
|
if (isDefunctParallelWell(well.name())) {
|
|
continue;
|
|
}
|
|
|
|
//add data infrastructure for shut wells
|
|
if (!wellDatas.count(well.name())) {
|
|
data::Well wellData;
|
|
|
|
if (!rft_config.active())
|
|
continue;
|
|
|
|
wellData.connections.resize(well.getConnections().size());
|
|
size_t count = 0;
|
|
for (const auto& connection: well.getConnections()) {
|
|
const size_t i = size_t(connection.getI());
|
|
const size_t j = size_t(connection.getJ());
|
|
const size_t k = size_t(connection.getK());
|
|
|
|
const size_t index = eclState_.gridDims().getGlobalIndex(i, j, k);
|
|
auto& connectionData = wellData.connections[count];
|
|
connectionData.index = index;
|
|
count++;
|
|
}
|
|
wellDatas.emplace(std::make_pair(well.name(), wellData));
|
|
}
|
|
|
|
data::Well& wellData = wellDatas.at(well.name());
|
|
for (auto& connectionData: wellData.connections) {
|
|
const auto index = connectionData.index;
|
|
if (oilConnectionPressures_.count(index) > 0)
|
|
connectionData.cell_pressure = oilConnectionPressures_.at(index);
|
|
if (waterConnectionSaturations_.count(index) > 0)
|
|
connectionData.cell_saturation_water = waterConnectionSaturations_.at(index);
|
|
if (gasConnectionSaturations_.count(index) > 0)
|
|
connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index);
|
|
}
|
|
}
|
|
oilConnectionPressures_.clear();
|
|
waterConnectionSaturations_.clear();
|
|
gasConnectionSaturations_.clear();
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
assignToSolution(data::Solution& sol)
|
|
{
|
|
if (!oilPressure_.empty()) {
|
|
sol.insert("PRESSURE", UnitSystem::measure::pressure, std::move(oilPressure_), data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
|
|
if (!temperature_.empty()) {
|
|
if (enableEnergy_)
|
|
sol.insert("TEMP", UnitSystem::measure::temperature, std::move(temperature_), data::TargetType::RESTART_SOLUTION);
|
|
else {
|
|
// Flow allows for initializing of non-constant initial temperature.
|
|
// For output of this temperature for visualization and restart set --enable-opm-restart=true
|
|
assert(enableTemperature_);
|
|
sol.insert("TEMP", UnitSystem::measure::temperature, std::move(temperature_), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !saturation_[waterPhaseIdx].empty()) {
|
|
sol.insert("SWAT", UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !saturation_[gasPhaseIdx].empty()) {
|
|
sol.insert("SGAS", UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
if (!ppcw_.empty()) {
|
|
sol.insert ("PPCW", UnitSystem::measure::pressure, std::move(ppcw_), data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
|
|
if (!gasDissolutionFactor_.empty()) {
|
|
sol.insert("RSSAT", UnitSystem::measure::gas_oil_ratio, std::move(gasDissolutionFactor_), data::TargetType::RESTART_AUXILIARY);
|
|
|
|
}
|
|
if (!oilVaporizationFactor_.empty()) {
|
|
sol.insert("RVSAT", UnitSystem::measure::oil_gas_ratio, std::move(oilVaporizationFactor_), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!rs_.empty()) {
|
|
sol.insert("RS", UnitSystem::measure::gas_oil_ratio, std::move(rs_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
}
|
|
if (!rv_.empty()) {
|
|
sol.insert("RV", UnitSystem::measure::oil_gas_ratio, std::move(rv_), data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
if (!invB_[waterPhaseIdx].empty()) {
|
|
sol.insert("1OVERBW", UnitSystem::measure::water_inverse_formation_volume_factor, std::move(invB_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!invB_[oilPhaseIdx].empty()) {
|
|
sol.insert("1OVERBO", UnitSystem::measure::oil_inverse_formation_volume_factor, std::move(invB_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!invB_[gasPhaseIdx].empty()) {
|
|
sol.insert("1OVERBG", UnitSystem::measure::gas_inverse_formation_volume_factor, std::move(invB_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (!density_[waterPhaseIdx].empty()) {
|
|
sol.insert("WAT_DEN", UnitSystem::measure::density, std::move(density_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!density_[oilPhaseIdx].empty()) {
|
|
sol.insert("OIL_DEN", UnitSystem::measure::density, std::move(density_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!density_[gasPhaseIdx].empty()) {
|
|
sol.insert("GAS_DEN", UnitSystem::measure::density, std::move(density_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (!viscosity_[waterPhaseIdx].empty()) {
|
|
sol.insert("WAT_VISC", UnitSystem::measure::viscosity, std::move(viscosity_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!viscosity_[oilPhaseIdx].empty()) {
|
|
sol.insert("OIL_VISC", UnitSystem::measure::viscosity, std::move(viscosity_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!viscosity_[gasPhaseIdx].empty()) {
|
|
sol.insert("GAS_VISC", UnitSystem::measure::viscosity, std::move(viscosity_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (!relativePermeability_[waterPhaseIdx].empty()) {
|
|
sol.insert("WATKR", UnitSystem::measure::identity, std::move(relativePermeability_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!relativePermeability_[oilPhaseIdx].empty()) {
|
|
sol.insert("OILKR", UnitSystem::measure::identity, std::move(relativePermeability_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (!relativePermeability_[gasPhaseIdx].empty()) {
|
|
sol.insert("GASKR", UnitSystem::measure::identity, std::move(relativePermeability_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (!pcSwMdcOw_.empty())
|
|
sol.insert ("PCSWM_OW", UnitSystem::measure::identity, std::move(pcSwMdcOw_), data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (!krnSwMdcOw_.empty())
|
|
sol.insert ("KRNSW_OW", UnitSystem::measure::identity, std::move(krnSwMdcOw_), data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (!pcSwMdcGo_.empty())
|
|
sol.insert ("PCSWM_GO", UnitSystem::measure::identity, std::move(pcSwMdcGo_), data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (!krnSwMdcGo_.empty())
|
|
sol.insert ("KRNSW_GO", UnitSystem::measure::identity, std::move(krnSwMdcGo_), data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (!soMax_.empty())
|
|
sol.insert ("SOMAX", UnitSystem::measure::identity, std::move(soMax_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!sSol_.empty())
|
|
sol.insert ("SSOLVENT", UnitSystem::measure::identity, std::move(sSol_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!extboX_.empty())
|
|
sol.insert ("SS_X", UnitSystem::measure::identity, std::move(extboX_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!extboY_.empty())
|
|
sol.insert ("SS_Y", UnitSystem::measure::identity, std::move(extboY_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!extboZ_.empty())
|
|
sol.insert ("SS_Z", UnitSystem::measure::identity, std::move(extboZ_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!mFracOil_.empty())
|
|
sol.insert ("STD_OIL", UnitSystem::measure::identity, std::move(mFracOil_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!mFracGas_.empty())
|
|
sol.insert ("STD_GAS", UnitSystem::measure::identity, std::move(mFracGas_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!mFracCo2_.empty())
|
|
sol.insert ("STD_CO2", UnitSystem::measure::identity, std::move(mFracCo2_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!cPolymer_.empty())
|
|
sol.insert ("POLYMER", UnitSystem::measure::identity, std::move(cPolymer_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!cFoam_.empty())
|
|
sol.insert ("FOAM", UnitSystem::measure::identity, std::move(cFoam_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!cSalt_.empty())
|
|
sol.insert ("SALT", UnitSystem::measure::salinity, std::move(cSalt_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!dewPointPressure_.empty())
|
|
sol.insert ("PDEW", UnitSystem::measure::pressure, std::move(dewPointPressure_), data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (!bubblePointPressure_.empty())
|
|
sol.insert ("PBUB", UnitSystem::measure::pressure, std::move(bubblePointPressure_), data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (!swMax_.empty())
|
|
sol.insert ("SWMAX", UnitSystem::measure::identity, std::move(swMax_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!minimumOilPressure_.empty())
|
|
sol.insert ("PRESROCC", UnitSystem::measure::pressure, std::move(minimumOilPressure_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!overburdenPressure_.empty())
|
|
sol.insert ("PRES_OVB", UnitSystem::measure::pressure, std::move(overburdenPressure_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!rockCompPorvMultiplier_.empty())
|
|
sol.insert ("PORV_RC", UnitSystem::measure::identity, std::move(rockCompPorvMultiplier_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (!rockCompTransMultiplier_.empty())
|
|
sol.insert ("TMULT_RC", UnitSystem::measure::identity, std::move(rockCompTransMultiplier_), data::TargetType::RESTART_SOLUTION);
|
|
|
|
// Fluid in place
|
|
for (const auto& phase : Inplace::phases()) {
|
|
if (outputFipRestart_ && !fip_[phase].empty()) {
|
|
sol.insert(EclString(phase),
|
|
UnitSystem::measure::volume,
|
|
fip_[phase],
|
|
data::TargetType::SUMMARY);
|
|
}
|
|
}
|
|
|
|
// tracers
|
|
if (!tracerConcentrations_.empty()) {
|
|
const auto& tracers = eclState_.tracer();
|
|
size_t tracerIdx = 0;
|
|
for (const auto& tracer : tracers) {
|
|
std::string tmp = tracer.name + "F";
|
|
sol.insert(tmp, UnitSystem::measure::identity, std::move(tracerConcentrations_[tracerIdx++]), data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
setRestart(const data::Solution& sol,
|
|
unsigned elemIdx,
|
|
unsigned globalDofIndex)
|
|
{
|
|
Scalar so = 1.0;
|
|
if (!saturation_[waterPhaseIdx].empty() && sol.has("SWAT")) {
|
|
saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex];
|
|
so -= sol.data("SWAT")[globalDofIndex];
|
|
}
|
|
if (!saturation_[gasPhaseIdx].empty() && sol.has("SGAS")) {
|
|
saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex];
|
|
so -= sol.data("SGAS")[globalDofIndex];
|
|
}
|
|
|
|
if (!sSol_.empty()) {
|
|
// keep the SSOL option for backward compatibility
|
|
// should be removed after 10.2018 release
|
|
if (sol.has("SSOL"))
|
|
sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex];
|
|
else if (sol.has("SSOLVENT"))
|
|
sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex];
|
|
|
|
so -= sSol_[elemIdx];
|
|
}
|
|
|
|
assert(!saturation_[oilPhaseIdx].empty());
|
|
saturation_[oilPhaseIdx][elemIdx] = so;
|
|
|
|
if (!oilPressure_.empty() && sol.has("PRESSURE"))
|
|
oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex];
|
|
if (!temperature_.empty() && sol.has("TEMP"))
|
|
temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex];
|
|
if (!rs_.empty() && sol.has("RS"))
|
|
rs_[elemIdx] = sol.data("RS")[globalDofIndex];
|
|
if (!rv_.empty() && sol.has("RV"))
|
|
rv_[elemIdx] = sol.data("RV")[globalDofIndex];
|
|
if (!cPolymer_.empty() && sol.has("POLYMER"))
|
|
cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex];
|
|
if (!cFoam_.empty() && sol.has("FOAM"))
|
|
cFoam_[elemIdx] = sol.data("FOAM")[globalDofIndex];
|
|
if (!cSalt_.empty() && sol.has("SALT"))
|
|
cSalt_[elemIdx] = sol.data("SALT")[globalDofIndex];
|
|
if (!soMax_.empty() && sol.has("SOMAX"))
|
|
soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex];
|
|
if (!pcSwMdcOw_.empty() &&sol.has("PCSWM_OW"))
|
|
pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex];
|
|
if (!krnSwMdcOw_.empty() && sol.has("KRNSW_OW"))
|
|
krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex];
|
|
if (!pcSwMdcGo_.empty() && sol.has("PCSWM_GO"))
|
|
pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex];
|
|
if (!krnSwMdcGo_.empty() && sol.has("KRNSW_GO"))
|
|
krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex];
|
|
if (!ppcw_.empty() && sol.has("PPCW"))
|
|
ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex];
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
typename EclGenericOutputBlackoilModule<FluidSystem,Scalar>::ScalarBuffer
|
|
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
regionSum(const ScalarBuffer& property,
|
|
const std::vector<int>& regionId,
|
|
size_t maxNumberOfRegions,
|
|
const Comm& comm)
|
|
{
|
|
ScalarBuffer totals(maxNumberOfRegions, 0.0);
|
|
|
|
if (property.empty())
|
|
return totals;
|
|
|
|
assert(regionId.size() == property.size());
|
|
for (size_t j = 0; j < regionId.size(); ++j) {
|
|
const int regionIdx = regionId[j] - 1;
|
|
// the cell is not attributed to any region. ignore it!
|
|
if (regionIdx < 0)
|
|
continue;
|
|
|
|
assert(regionIdx < static_cast<int>(maxNumberOfRegions));
|
|
totals[regionIdx] += property[j];
|
|
}
|
|
|
|
for (size_t i = 0; i < maxNumberOfRegions; ++i)
|
|
totals[i] = comm.sum(totals[i]);
|
|
|
|
return totals;
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
doAllocBuffers(unsigned bufferSize,
|
|
unsigned reportStepNum,
|
|
const bool substep,
|
|
const bool log,
|
|
const bool isRestart,
|
|
const bool vapparsActive,
|
|
const bool enableHysteresis,
|
|
unsigned numTracers)
|
|
{
|
|
// Only output RESTART_AUXILIARY asked for by the user.
|
|
std::map<std::string, int> rstKeywords = schedule_.rst_keywords(reportStepNum);
|
|
for (auto& [keyword, should_write] : rstKeywords) {
|
|
if (this->isOutputCreationDirective_(keyword)) {
|
|
// 'BASIC', 'FREQ' and similar. Don't attempt to create
|
|
// cell-based output for these keywords and don't warn about
|
|
// not being able to create such cell-based result vectors.
|
|
should_write = 0;
|
|
}
|
|
}
|
|
|
|
outputFipRestart_ = false;
|
|
computeFip_ = false;
|
|
|
|
// Fluid in place
|
|
for (const auto& phase : Inplace::phases()) {
|
|
if (!substep || summaryConfig_.require3DField(EclString(phase))) {
|
|
if (rstKeywords["FIP"] > 0) {
|
|
rstKeywords["FIP"] = 0;
|
|
outputFipRestart_ = true;
|
|
}
|
|
fip_[phase].resize(bufferSize, 0.0);
|
|
computeFip_ = true;
|
|
}
|
|
else
|
|
fip_[phase].clear();
|
|
}
|
|
|
|
if (!substep || summaryConfig_.hasKeyword("FPR") || summaryConfig_.hasKeyword("FPRP") || !this->RPRNodes_.empty()) {
|
|
fip_[Inplace::Phase::PoreVolume].resize(bufferSize, 0.0);
|
|
hydrocarbonPoreVolume_.resize(bufferSize, 0.0);
|
|
pressureTimesPoreVolume_.resize(bufferSize, 0.0);
|
|
pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0);
|
|
}
|
|
else {
|
|
hydrocarbonPoreVolume_.clear();
|
|
pressureTimesPoreVolume_.clear();
|
|
pressureTimesHydrocarbonVolume_.clear();
|
|
}
|
|
|
|
// Well RFT data
|
|
if (!substep) {
|
|
const auto& rft_config = schedule_[reportStepNum].rft_config();
|
|
for (const auto& well: schedule_.getWells(reportStepNum)) {
|
|
|
|
// don't bother with wells not on this process
|
|
if (isDefunctParallelWell(well.name())) {
|
|
continue;
|
|
}
|
|
|
|
if (!rft_config.active())
|
|
continue;
|
|
|
|
for (const auto& connection: well.getConnections()) {
|
|
const size_t i = size_t(connection.getI());
|
|
const size_t j = size_t(connection.getJ());
|
|
const size_t k = size_t(connection.getK());
|
|
const size_t index = eclState_.gridDims().getGlobalIndex(i, j, k);
|
|
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx))
|
|
oilConnectionPressures_.emplace(std::make_pair(index, 0.0));
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx))
|
|
waterConnectionSaturations_.emplace(std::make_pair(index, 0.0));
|
|
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx))
|
|
gasConnectionSaturations_.emplace(std::make_pair(index, 0.0));
|
|
}
|
|
}
|
|
}
|
|
|
|
// field data should be allocated
|
|
// 1) when we want to restart
|
|
// 2) when it is ask for by the user via restartConfig
|
|
// 3) when it is not a substep
|
|
if (!isRestart && (!schedule_.write_rst_file(reportStepNum, log) || substep))
|
|
return;
|
|
|
|
// always output saturation of active phases
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
saturation_[phaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
// and oil pressure
|
|
oilPressure_.resize(bufferSize, 0.0);
|
|
rstKeywords["PRES"] = 0;
|
|
rstKeywords["PRESSURE"] = 0;
|
|
|
|
// allocate memory for temperature
|
|
if (enableEnergy_ || enableTemperature_) {
|
|
temperature_.resize(bufferSize, 0.0);
|
|
rstKeywords["TEMP"] = 0;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx))
|
|
rstKeywords["SOIL"] = 0;
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx))
|
|
rstKeywords["SGAS"] = 0;
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx))
|
|
rstKeywords["SWAT"] = 0;
|
|
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
rs_.resize(bufferSize, 0.0);
|
|
rstKeywords["RS"] = 0;
|
|
}
|
|
if (FluidSystem::enableVaporizedOil()) {
|
|
rv_.resize(bufferSize, 0.0);
|
|
rstKeywords["RV"] = 0;
|
|
}
|
|
|
|
if (enableSolvent_)
|
|
sSol_.resize(bufferSize, 0.0);
|
|
if (enablePolymer_)
|
|
cPolymer_.resize(bufferSize, 0.0);
|
|
if (enableFoam_)
|
|
cFoam_.resize(bufferSize, 0.0);
|
|
if (enableBrine_)
|
|
cSalt_.resize(bufferSize, 0.0);
|
|
if (enableExtbo_) {
|
|
extboX_.resize(bufferSize, 0.0);
|
|
extboY_.resize(bufferSize, 0.0);
|
|
extboZ_.resize(bufferSize, 0.0);
|
|
mFracOil_.resize(bufferSize, 0.0);
|
|
mFracGas_.resize(bufferSize, 0.0);
|
|
mFracCo2_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (vapparsActive)
|
|
soMax_.resize(bufferSize, 0.0);
|
|
|
|
if (enableHysteresis) {
|
|
pcSwMdcOw_.resize(bufferSize, 0.0);
|
|
krnSwMdcOw_.resize(bufferSize, 0.0);
|
|
pcSwMdcGo_.resize(bufferSize, 0.0);
|
|
krnSwMdcGo_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (eclState_.fieldProps().has_double("SWATINIT")) {
|
|
ppcw_.resize(bufferSize, 0.0);
|
|
rstKeywords["PPCW"] = 0;
|
|
}
|
|
|
|
if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) {
|
|
rstKeywords["RSSAT"] = 0;
|
|
gasDissolutionFactor_.resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) {
|
|
rstKeywords["RVSAT"] = 0;
|
|
oilVaporizationFactor_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) {
|
|
rstKeywords["BW"] = 0;
|
|
invB_[waterPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) {
|
|
rstKeywords["BO"] = 0;
|
|
invB_[oilPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) {
|
|
rstKeywords["BG"] = 0;
|
|
invB_[gasPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (rstKeywords["DEN"] > 0) {
|
|
rstKeywords["DEN"] = 0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
density_[phaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
}
|
|
const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0);
|
|
const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0);
|
|
const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0);
|
|
rstKeywords["VISC"] = 0;
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) {
|
|
rstKeywords["VWAT"] = 0;
|
|
viscosity_[waterPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) {
|
|
rstKeywords["VOIL"] = 0;
|
|
viscosity_[oilPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) {
|
|
rstKeywords["VGAS"] = 0;
|
|
viscosity_[gasPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) {
|
|
rstKeywords["KRW"] = 0;
|
|
relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) {
|
|
rstKeywords["KRO"] = 0;
|
|
relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) {
|
|
rstKeywords["KRG"] = 0;
|
|
relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (rstKeywords["PBPD"] > 0) {
|
|
rstKeywords["PBPD"] = 0;
|
|
bubblePointPressure_.resize(bufferSize, 0.0);
|
|
dewPointPressure_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
// tracers
|
|
if (numTracers > 0) {
|
|
tracerConcentrations_.resize(numTracers);
|
|
for (unsigned tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
|
|
{
|
|
tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
|
|
}
|
|
}
|
|
|
|
// ROCKC
|
|
if (rstKeywords["ROCKC"] > 0) {
|
|
rstKeywords["ROCKC"] = 0;
|
|
rockCompPorvMultiplier_.resize(bufferSize, 0.0);
|
|
rockCompTransMultiplier_.resize(bufferSize, 0.0);
|
|
swMax_.resize(bufferSize, 0.0);
|
|
minimumOilPressure_.resize(bufferSize, 0.0);
|
|
overburdenPressure_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
//Warn for any unhandled keyword
|
|
if (log) {
|
|
for (auto& keyValue: rstKeywords) {
|
|
if (keyValue.second > 0) {
|
|
std::string logstring = "Keyword '";
|
|
logstring.append(keyValue.first);
|
|
logstring.append("' is unhandled for output to file.");
|
|
OpmLog::warning("Unhandled output keyword", logstring);
|
|
}
|
|
}
|
|
}
|
|
|
|
failedCellsPb_.clear();
|
|
failedCellsPd_.clear();
|
|
|
|
// Not supported in flow legacy
|
|
if (false)
|
|
saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0);
|
|
if (false)
|
|
oilSaturationPressure_.resize(bufferSize, 0.0);
|
|
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
fipUnitConvert_(std::unordered_map<Inplace::Phase, Scalar>& fip) const
|
|
{
|
|
const UnitSystem& units = eclState_.getUnits();
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
fip[Inplace::Phase::WATER] = unit::convert::to(fip[Inplace::Phase::WATER], unit::stb);
|
|
fip[Inplace::Phase::OIL] = unit::convert::to(fip[Inplace::Phase::OIL], unit::stb);
|
|
fip[Inplace::Phase::OilInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::OilInLiquidPhase], unit::stb);
|
|
fip[Inplace::Phase::OilInGasPhase] = unit::convert::to(fip[Inplace::Phase::OilInGasPhase], unit::stb);
|
|
fip[Inplace::Phase::GAS] = unit::convert::to(fip[Inplace::Phase::GAS], 1000*unit::cubic(unit::feet));
|
|
fip[Inplace::Phase::GasInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::GasInLiquidPhase], 1000*unit::cubic(unit::feet));
|
|
fip[Inplace::Phase::GasInGasPhase] = unit::convert::to(fip[Inplace::Phase::GasInGasPhase], 1000*unit::cubic(unit::feet));
|
|
fip[Inplace::Phase::PoreVolume] = unit::convert::to(fip[Inplace::Phase::PoreVolume], unit::stb);
|
|
}
|
|
else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
|
|
Scalar scc = unit::cubic(prefix::centi * unit::meter); //standard cubic cm.
|
|
fip[Inplace::Phase::WATER] = unit::convert::to(fip[Inplace::Phase::WATER], scc);
|
|
fip[Inplace::Phase::OIL] = unit::convert::to(fip[Inplace::Phase::OIL], scc);
|
|
fip[Inplace::Phase::OilInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::OilInLiquidPhase], scc);
|
|
fip[Inplace::Phase::OilInGasPhase] = unit::convert::to(fip[Inplace::Phase::OilInGasPhase], scc);
|
|
fip[Inplace::Phase::GAS] = unit::convert::to(fip[Inplace::Phase::GAS], scc);
|
|
fip[Inplace::Phase::GasInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::GasInLiquidPhase], scc);
|
|
fip[Inplace::Phase::GasInGasPhase] = unit::convert::to(fip[Inplace::Phase::GasInGasPhase], scc);
|
|
fip[Inplace::Phase::PoreVolume] = unit::convert::to(fip[Inplace::Phase::PoreVolume], scc);
|
|
}
|
|
else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
// nothing to do
|
|
}
|
|
else {
|
|
throw std::runtime_error("Unsupported unit type for fluid in place output.");
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
pressureUnitConvert_(Scalar& pav) const
|
|
{
|
|
const UnitSystem& units = eclState_.getUnits();
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
pav = unit::convert::to(pav, unit::psia);
|
|
}
|
|
else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
pav = unit::convert::to(pav, unit::barsa);
|
|
}
|
|
else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
|
|
pav = unit::convert::to(pav, unit::atm);
|
|
|
|
}
|
|
else {
|
|
throw std::runtime_error("Unsupported unit type for fluid in place output.");
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputRegionFluidInPlace_(std::unordered_map<Inplace::Phase, Scalar> oip,
|
|
std::unordered_map<Inplace::Phase, Scalar> cip,
|
|
const Scalar& pav, const int reg) const
|
|
{
|
|
if (forceDisableFipOutput_)
|
|
return;
|
|
|
|
// don't output FIPNUM report if the region has no porv.
|
|
if (cip[Inplace::Phase::PoreVolume] == 0)
|
|
return;
|
|
|
|
const UnitSystem& units = eclState_.getUnits();
|
|
std::ostringstream ss;
|
|
if (reg == 0) {
|
|
ss << " ===================================================\n"
|
|
<< " : Field Totals :\n";
|
|
}
|
|
else {
|
|
ss << " ===================================================\n"
|
|
<< " : FIPNUM report region "
|
|
<< std::setw(2) << reg << " :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n"
|
|
<< std::fixed << std::setprecision(0)
|
|
<< " : PORV =" << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RM3 :\n";
|
|
if (!reg) {
|
|
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
|
|
<< " : Porv volumes are taken at reference conditions :\n";
|
|
}
|
|
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n"
|
|
<< std::fixed << std::setprecision(0)
|
|
<< " : PORV =" << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RB :\n";
|
|
if (!reg) {
|
|
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
|
|
<< " : Pore volumes are taken at reference conditions :\n";
|
|
}
|
|
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
|
|
}
|
|
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
|
|
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
|
|
<< ":Currently in place :" << std::setw(14) << cip[Inplace::Phase::OilInLiquidPhase] << std::setw(14) << cip[Inplace::Phase::OilInGasPhase] << std::setw(14) << cip[Inplace::Phase::OIL] << ":"
|
|
<< std::setw(13) << cip[Inplace::Phase::WATER] << " :" << std::setw(14) << (cip[Inplace::Phase::GasInGasPhase]) << std::setw(14) << cip[Inplace::Phase::GasInLiquidPhase] << std::setw(14) << cip[Inplace::Phase::GAS] << ":\n"
|
|
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
|
|
<< ":Originally in place :" << std::setw(14) << oip[Inplace::Phase::OilInLiquidPhase] << std::setw(14) << oip[Inplace::Phase::OilInGasPhase] << std::setw(14) << oip[Inplace::Phase::OIL] << ":"
|
|
<< std::setw(13) << oip[Inplace::Phase::WATER] << " :" << std::setw(14) << oip[Inplace::Phase::GasInGasPhase] << std::setw(14) << oip[Inplace::Phase::GasInLiquidPhase] << std::setw(14) << oip[Inplace::Phase::GAS] << ":\n"
|
|
<< ":========================:==========================================:================:==========================================:\n";
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputProductionReport_(const ScalarBuffer& wellProd,
|
|
const StringBuffer& wellProdNames,
|
|
const bool forceDisableProdOutput)
|
|
{
|
|
if (forceDisableProdOutput)
|
|
return;
|
|
|
|
const UnitSystem& units = eclState_.getUnits();
|
|
std::ostringstream ss;
|
|
if (wellProdNames[WellProdDataType::WellName].empty()) {
|
|
ss << "======================================================= PRODUCTION REPORT =======================================================\n"//=================== \n"
|
|
<< ": WELL : LOCATION :CTRL: OIL : WATER : GAS : FLUID : WATER : GAS/OIL : WAT/GAS : BHP OR : THP OR :\n"// STEADY-ST PI :\n"
|
|
<< ": NAME : (I,J,K) :MODE: RATE : RATE : RATE : RES.VOL. : CUT : RATIO : RATIO : CON.PR.: BLK.PR.:\n";// OR POTN OF PREF. PH:\n";
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
ss << ": : : : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : SCM/SCM : SCM/SCM : SCM/SCM : BARSA : BARSA :\n";// :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
ss << ": : : : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : : MSCF/STB : STB/MSCF : PSIA : PSIA :\n";// :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
|
|
ss << ": : : : SCC/HR : SCC/HR : SCC/HR : RCC : SCC/SCC : SCC/SCC : SCC/SCC : ATMA : ATMA :\n";// :\n";
|
|
}
|
|
ss << "=================================================================================================================================\n";//=================== \n";
|
|
}
|
|
else {
|
|
if (wellProd[WellProdDataType::WellLocationi] < 1) {
|
|
ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(11) << "" << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << "" << ":" << std::setw(8) << "" << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n"
|
|
}
|
|
else {
|
|
ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(5) << wellProd[WellProdDataType::WellLocationi] << "," << std::setw(5) << wellProd[WellProdDataType::WellLocationj] << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << wellProd[WellProdDataType::BHP] << ":" << std::setw(8) << wellProd[WellProdDataType::THP] << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n"
|
|
}
|
|
ss << ":"<< std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (5) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (11) << ":" << std::setfill ('-') << std::setw (13) << ":" << std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (9) << ":" << "\n";
|
|
}
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputInjectionReport_(const ScalarBuffer& wellInj,
|
|
const StringBuffer& wellInjNames,
|
|
const bool forceDisableInjOutput)
|
|
{
|
|
if (forceDisableInjOutput)
|
|
return;
|
|
|
|
const UnitSystem& units = eclState_.getUnits();
|
|
std::ostringstream ss;
|
|
if (wellInjNames[WellInjDataType::WellName].empty()) {
|
|
ss << "=================================================== INJECTION REPORT ========================================\n"//===================== \n"
|
|
<< ": WELL : LOCATION : CTRL : CTRL : CTRL : OIL : WATER : GAS : FLUID : BHP OR : THP OR :\n"// STEADY-ST II :\n"
|
|
<< ": NAME : (I,J,K) : MODE : MODE : MODE : RATE : RATE : RATE : RES.VOL. : CON.PR.: BLK.PR.:\n";// OR POTENTIAL :\n";
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
ss << ": : : OIL : WAT : GAS : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : BARSA : BARSA :\n";// :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
ss << ": : : OIL : WAT : GAS : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : PSIA : PSIA :\n";// :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
|
|
ss << ": : : OIL : WAT : GAS : SCC/HR : SCC/HR : SCC/HR : RCC/HR : ATMA : ATMA :\n";// :\n";
|
|
}
|
|
ss << "==============================================================================================================\n";//===================== \n";
|
|
}
|
|
else {
|
|
if (wellInj[WellInjDataType::WellLocationi] < 1) {
|
|
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< "" << ":" << std::setw(8)<< "" << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
|
|
}
|
|
else {
|
|
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(5) << wellInj[WellInjDataType::WellLocationi] << "," << std::setw(5) << wellInj[WellInjDataType::WellLocationj] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< wellInj[WellInjDataType::BHP] << ":" << std::setw(8)<< wellInj[WellInjDataType::THP] << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
|
|
}
|
|
ss << ":--------:-----------:------:------:------:------------:----------:-----------:-----------:--------:--------: \n";//--------------------:\n";
|
|
}
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputCumulativeReport_(const ScalarBuffer& wellCum,
|
|
const StringBuffer& wellCumNames,
|
|
const bool forceDisableCumOutput)
|
|
{
|
|
if (forceDisableCumOutput)
|
|
return;
|
|
|
|
const UnitSystem& units = eclState_.getUnits();
|
|
std::ostringstream ss;
|
|
if (wellCumNames[WellCumDataType::WellName].empty()) {
|
|
ss << "=================================================== CUMULATIVE PRODUCTION/INJECTION REPORT =========================================\n"
|
|
<< ": WELL : LOCATION : WELL :CTRL: OIL : WATER : GAS : Prod : OIL : WATER : GAS : INJ :\n"
|
|
<< ": NAME : (I,J,K) : TYPE :MODE: PROD : PROD : PROD : RES.VOL. : INJ : INJ : INJ : RES.VOL. :\n";
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
ss << ": : : : : MSCM : MSCM : MMSCM : MRCM : MSCM : MSCM : MMSCM : MRCM :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
ss << ": : : : : MSTB : MSTB : MMSCF : MRB : MSTB : MSTB : MMSCF : MRB :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
|
|
ss << ": : : : : MSCC : MSCC : MMSCC : MRCC : MSCC : MSCC : MMSCC : MRCC :\n";
|
|
}
|
|
ss << "====================================================================================================================================\n";
|
|
}
|
|
else {
|
|
if (wellCum[WellCumDataType::WellLocationi] < 1) {
|
|
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n";
|
|
}
|
|
else {
|
|
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(5) << wellCum[WellCumDataType::WellLocationi] << "," << std::setw(5) << wellCum[WellCumDataType::WellLocationj] << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n";
|
|
}
|
|
ss << ":--------:-----------:--------:----:------------:----------:-----------:-----------:------------:----------:-----------:-----------: \n";
|
|
}
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
bool EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
isOutputCreationDirective_(const std::string& keyword)
|
|
{
|
|
return (keyword == "BASIC") || (keyword == "FREQ")
|
|
|| (keyword == "RESTART") // From RPTSCHED
|
|
|| (keyword == "SAVE") || (keyword == "SFREQ"); // Not really supported
|
|
}
|
|
|
|
template<class FluidSystem, class Scalar>
|
|
Scalar EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
pressureAverage_(const Scalar& pressurePvHydrocarbon,
|
|
const Scalar& pvHydrocarbon,
|
|
const Scalar& pressurePv,
|
|
const Scalar& pv,
|
|
bool hydrocarbon)
|
|
{
|
|
if (pvHydrocarbon > 1e-10 && hydrocarbon)
|
|
return pressurePvHydrocarbon / pvHydrocarbon;
|
|
|
|
return pressurePv / pv;
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
typename EclGenericOutputBlackoilModule<FluidSystem,Scalar>::ScalarBuffer
|
|
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon,
|
|
const ScalarBuffer& pvHydrocarbon,
|
|
const ScalarBuffer& pressurePv,
|
|
const ScalarBuffer& pv,
|
|
bool hydrocarbon)
|
|
{
|
|
size_t size = pressurePvHydrocarbon.size();
|
|
assert(pvHydrocarbon.size() == size);
|
|
assert(pressurePv.size() == size);
|
|
assert(pv.size() == size);
|
|
|
|
ScalarBuffer fraction(size, 0.0);
|
|
for (size_t i = 0; i < size; ++i) {
|
|
fraction[i] = pressureAverage_(pressurePvHydrocarbon[i], pvHydrocarbon[i], pressurePv[i], pv[i], hydrocarbon);
|
|
}
|
|
return fraction;
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputErrorLog(const Comm& comm) const
|
|
{
|
|
const size_t maxNumCellsFaillog = 20;
|
|
|
|
int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size();
|
|
std::vector<int> displPb, displPd, recvLenPb, recvLenPd;
|
|
|
|
if (comm.rank() == 0) {
|
|
displPb.resize(comm.size()+1, 0);
|
|
displPd.resize(comm.size()+1, 0);
|
|
recvLenPb.resize(comm.size());
|
|
recvLenPd.resize(comm.size());
|
|
}
|
|
|
|
comm.gather(&pbSize, recvLenPb.data(), 1, 0);
|
|
comm.gather(&pdSize, recvLenPd.data(), 1, 0);
|
|
std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1);
|
|
std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1);
|
|
std::vector<int> globalFailedCellsPb, globalFailedCellsPd;
|
|
|
|
if (comm.rank() == 0) {
|
|
globalFailedCellsPb.resize(displPb.back());
|
|
globalFailedCellsPd.resize(displPd.back());
|
|
}
|
|
|
|
comm.gatherv(failedCellsPb_.data(), static_cast<int>(failedCellsPb_.size()),
|
|
globalFailedCellsPb.data(), recvLenPb.data(),
|
|
displPb.data(), 0);
|
|
comm.gatherv(failedCellsPd_.data(), static_cast<int>(failedCellsPd_.size()),
|
|
globalFailedCellsPd.data(), recvLenPd.data(),
|
|
displPd.data(), 0);
|
|
std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end());
|
|
std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end());
|
|
|
|
if (!globalFailedCellsPb.empty()) {
|
|
std::stringstream errlog;
|
|
errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells [";
|
|
errlog << globalFailedCellsPb[0];
|
|
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size());
|
|
for (size_t i = 1; i < maxElems; ++i) {
|
|
errlog << ", " << globalFailedCellsPb[i];
|
|
}
|
|
if (globalFailedCellsPb.size() > maxNumCellsFaillog) {
|
|
errlog << ", ...";
|
|
}
|
|
errlog << "]";
|
|
OpmLog::warning("Bubble point numerical problem", errlog.str());
|
|
}
|
|
if (!globalFailedCellsPd.empty()) {
|
|
std::stringstream errlog;
|
|
errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells [";
|
|
errlog << globalFailedCellsPd[0];
|
|
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size());
|
|
for (size_t i = 1; i < maxElems; ++i) {
|
|
errlog << ", " << globalFailedCellsPd[i];
|
|
}
|
|
if (globalFailedCellsPd.size() > maxNumCellsFaillog) {
|
|
errlog << ", ...";
|
|
}
|
|
errlog << "]";
|
|
OpmLog::warning("Dew point numerical problem", errlog.str());
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
outputFipLogImpl(const Inplace& inplace) const
|
|
{
|
|
{
|
|
Scalar fieldHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
|
|
inplace.get(Inplace::Phase::HydroCarbonPV),
|
|
inplace.get(Inplace::Phase::PressurePV),
|
|
inplace.get(Inplace::Phase::PoreVolume),
|
|
true);
|
|
|
|
std::unordered_map<Inplace::Phase, Scalar> initial_values;
|
|
std::unordered_map<Inplace::Phase, Scalar> current_values;
|
|
|
|
for (const auto& phase : Inplace::phases()) {
|
|
initial_values[phase] = this->initialInplace_->get(phase);
|
|
current_values[phase] = inplace.get(phase);
|
|
}
|
|
|
|
|
|
fipUnitConvert_(initial_values);
|
|
fipUnitConvert_(current_values);
|
|
|
|
pressureUnitConvert_(fieldHydroCarbonPoreVolumeAveragedPressure);
|
|
outputRegionFluidInPlace_(initial_values,
|
|
current_values,
|
|
fieldHydroCarbonPoreVolumeAveragedPressure);
|
|
}
|
|
|
|
for (size_t reg = 1; reg <= inplace.max_region("FIPNUM"); ++reg) {
|
|
std::unordered_map<Inplace::Phase, Scalar> initial_values;
|
|
std::unordered_map<Inplace::Phase, Scalar> current_values;
|
|
|
|
for (const auto& phase : Inplace::phases()) {
|
|
initial_values[phase] = this->initialInplace_->get("FIPNUM", phase, reg);
|
|
current_values[phase] = inplace.get("FIPNUM", phase, reg);
|
|
}
|
|
fipUnitConvert_(initial_values);
|
|
fipUnitConvert_(current_values);
|
|
|
|
Scalar regHydroCarbonPoreVolumeAveragedPressure
|
|
= pressureAverage_(inplace.get("FIPNUM", Inplace::Phase::PressureHydroCarbonPV, reg),
|
|
inplace.get("FIPNUM", Inplace::Phase::HydroCarbonPV, reg),
|
|
inplace.get("FIPNUM", Inplace::Phase::PressurePV, reg),
|
|
inplace.get("FIPNUM", Inplace::Phase::PoreVolume, reg),
|
|
true);
|
|
pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure);
|
|
outputRegionFluidInPlace_(initial_values, current_values, regHydroCarbonPoreVolumeAveragedPressure, reg);
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
int EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
regionMax(const std::vector<int>& region,
|
|
const Comm& comm)
|
|
{
|
|
const auto max_value = region.empty() ? 0 : *std::max_element(region.begin(), region.end());
|
|
return comm.max(max_value);
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
update(Inplace& inplace,
|
|
const std::string& region_name,
|
|
Inplace::Phase phase,
|
|
std::size_t ntFip,
|
|
const std::vector<double>& values)
|
|
{
|
|
double sum = 0;
|
|
for (std::size_t region_number = 0; region_number < ntFip; region_number++) {
|
|
inplace.add( region_name, phase, region_number + 1, values[region_number] );
|
|
sum += values[region_number];
|
|
}
|
|
inplace.add( phase, sum );
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
makeRegionSum(Inplace& inplace,
|
|
const std::string& region_name,
|
|
const Comm& comm)
|
|
{
|
|
const auto& region = this->regions_.at(region_name);
|
|
std::size_t ntFip = this->regionMax(region, comm);
|
|
|
|
update(inplace, region_name, Inplace::Phase::PressurePV, ntFip, this->regionSum(this->pressureTimesPoreVolume_, region, ntFip, comm));
|
|
update(inplace, region_name, Inplace::Phase::HydroCarbonPV, ntFip, this->regionSum(this->hydrocarbonPoreVolume_, region, ntFip, comm));
|
|
update(inplace, region_name, Inplace::Phase::PressureHydroCarbonPV, ntFip, this->regionSum(this->pressureTimesHydrocarbonVolume_, region, ntFip, comm));
|
|
|
|
for (const auto& phase : Inplace::phases())
|
|
update(inplace, region_name, phase, ntFip, this->regionSum(this->fip_[phase], region, ntFip, comm));
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
accumulateRegionSums(const Comm& comm)
|
|
{
|
|
Inplace inplace;
|
|
|
|
for (const auto& [region_name, _] : this->regions_) {
|
|
(void)_;
|
|
makeRegionSum(inplace, region_name, comm);
|
|
}
|
|
|
|
// The first time the outputFipLog function is run we store the inplace values in
|
|
// the initialInplace_ member. This has at least two problems:
|
|
//
|
|
// o We really want the *initial* value - now we get the value after
|
|
// the first timestep.
|
|
//
|
|
// o For restarted runs this is obviously wrong.
|
|
//
|
|
// Finally it is of course not desirable to mutate state in an output
|
|
// routine.
|
|
if (!this->initialInplace_.has_value())
|
|
this->initialInplace_ = inplace;
|
|
return inplace;
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
Scalar EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
sum(const ScalarBuffer& v)
|
|
{
|
|
return std::accumulate(v.begin(), v.end(), Scalar{0});
|
|
}
|
|
|
|
template<class FluidSystem,class Scalar>
|
|
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
|
|
updateSummaryRegionValues(const Inplace& inplace,
|
|
std::map<std::string, double>& miscSummaryData,
|
|
std::map<std::string, std::vector<double>>& regionData) const
|
|
{
|
|
// The field summary vectors should only use the FIPNUM based region sum.
|
|
{
|
|
for (const auto& phase : Inplace::phases()) {
|
|
std::string key = "F" + EclString(phase);
|
|
if (summaryConfig_.hasKeyword(key))
|
|
miscSummaryData[key] = inplace.get(phase);
|
|
}
|
|
|
|
if (summaryConfig_.hasKeyword("FOE") && this->initialInplace_)
|
|
miscSummaryData["FOE"] = inplace.get(Inplace::Phase::OIL)
|
|
/ this->initialInplace_.value().get(Inplace::Phase::OIL);
|
|
|
|
if (summaryConfig_.hasKeyword("FPR"))
|
|
miscSummaryData["FPR"] = pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
|
|
inplace.get(Inplace::Phase::HydroCarbonPV),
|
|
inplace.get(Inplace::Phase::PressurePV),
|
|
inplace.get(Inplace::Phase::PoreVolume),
|
|
true);
|
|
|
|
|
|
if (summaryConfig_.hasKeyword("FPRP"))
|
|
miscSummaryData["FPRP"] = pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
|
|
inplace.get(Inplace::Phase::HydroCarbonPV),
|
|
inplace.get(Inplace::Phase::PressurePV),
|
|
inplace.get(Inplace::Phase::PoreVolume),
|
|
false);
|
|
}
|
|
|
|
// The region summary vectors should loop through the FIPxxx regions to
|
|
// support the RPR__xxx summary keywords.
|
|
{
|
|
for (const auto& phase : Inplace::phases()) {
|
|
for (const auto& node : this->regionNodes_.at(phase))
|
|
regionData[node.keyword()] = inplace.get_vector(node.fip_region(), phase);
|
|
}
|
|
|
|
// The exact same quantity is calculated for RPR and RPRP - is that correct?
|
|
for (const auto& node : this->RPRNodes_)
|
|
regionData[node.keyword()] = pressureAverage_(inplace.get_vector(node.fip_region(), Inplace::Phase::PressureHydroCarbonPV),
|
|
inplace.get_vector(node.fip_region(), Inplace::Phase::HydroCarbonPV),
|
|
inplace.get_vector(node.fip_region(), Inplace::Phase::PressurePV),
|
|
inplace.get_vector(node.fip_region(), Inplace::Phase::PoreVolume),
|
|
true);
|
|
|
|
|
|
for (const auto& node : this->RPRPNodes_)
|
|
regionData[node.keyword()] = pressureAverage_(inplace.get_vector(node.fip_region(), Inplace::Phase::PressureHydroCarbonPV),
|
|
inplace.get_vector(node.fip_region(), Inplace::Phase::HydroCarbonPV),
|
|
inplace.get_vector(node.fip_region(), Inplace::Phase::PressurePV),
|
|
inplace.get_vector(node.fip_region(), Inplace::Phase::PoreVolume),
|
|
false);
|
|
}
|
|
}
|
|
|
|
template class EclGenericOutputBlackoilModule<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,double>;
|
|
template class EclGenericOutputBlackoilModule<BlackOilFluidSystem<double,EclAlternativeBlackOilIndexTraits>,double>;
|
|
|
|
} // namespace Opm
|