opm-simulators/ebos/eclproblem_properties.hh

564 lines
18 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclProblem
*/
#ifndef ECL_PROBLEM_PROPERTIES_HH
#define ECL_PROBLEM_PROPERTIES_HH
#include <ebos/eclbaseaquifermodel.hh>
#include <ebos/eclcpgridvanguard.hh>
#include <ebos/ecldummygradientcalculator.hh>
#include <ebos/eclfluxmodule.hh>
#include <ebos/eclnewtonmethod.hh>
#include <ebos/ecloutputblackoilmodule.hh>
#include <ebos/eclwriter.hh>
#include <ebos/FIBlackOilModel.hpp>
#include <ebos/vtkecltracermodule.hh>
#include <opm/input/eclipse/Parser/ParserKeywords/E.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/thermal/EclThermalLawManager.hpp>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/propertysystem.hh>
#include <tuple>
namespace Opm {
template <class TypeTag>
class EclProblem;
}
namespace Opm::Properties {
namespace TTag {
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclCpGridVanguard>;
};
}
// The class which deals with ECL wells
template<class TypeTag, class MyTypeTag>
struct EclWellModel {
using type = UndefinedProperty;
};
// Write all solutions for visualization, not just the ones for the
// report steps...
template<class TypeTag, class MyTypeTag>
struct EnableWriteAllSolutions {
using type = UndefinedProperty;
};
// The number of time steps skipped between writing two consequtive restart files
template<class TypeTag, class MyTypeTag>
struct RestartWritingInterval {
using type = UndefinedProperty;
};
// Enable partial compensation of systematic mass losses via the source term of the next time
// step
template<class TypeTag, class MyTypeTag>
struct EclEnableDriftCompensation {
using type = UndefinedProperty;
};
// Enable the additional checks even if compiled in debug mode (i.e., with the NDEBUG
// macro undefined). Next to a slightly better performance, this also eliminates some
// print statements in debug mode.
template<class TypeTag, class MyTypeTag>
struct EnableDebuggingChecks {
using type = UndefinedProperty;
};
// if thermal flux boundaries are enabled an effort is made to preserve the initial
// thermal gradient specified via the TEMPVD keyword
template<class TypeTag, class MyTypeTag>
struct EnableThermalFluxBoundaries {
using type = UndefinedProperty;
};
// Specify whether API tracking should be enabled (replaces PVT regions).
// TODO: This is not yet implemented
template<class TypeTag, class MyTypeTag>
struct EnableApiTracking {
using type = UndefinedProperty;
};
// The class which deals with ECL aquifers
template<class TypeTag, class MyTypeTag>
struct EclAquiferModel {
using type = UndefinedProperty;
};
// In experimental mode, decides if the aquifer model should be enabled or not
template<class TypeTag, class MyTypeTag>
struct EclEnableAquifers {
using type = UndefinedProperty;
};
// time stepping parameters
template<class TypeTag, class MyTypeTag>
struct EclMaxTimeStepSizeAfterWellEvent {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclRestartShrinkFactor {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclEnableTuning {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct OutputMode {
using type = UndefinedProperty;
};
// Parameterize equilibration accuracy
template<class TypeTag, class MyTypeTag>
struct NumPressurePointsEquil {
using type = UndefinedProperty;
};
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::EclBaseProblem> {
using type = EclProblem<TypeTag>;
};
template<class TypeTag>
struct Model<TypeTag, TTag::EclBaseProblem> {
using type = FIBlackOilModel<TypeTag>;
};
// Select the element centered finite volume method as spatial discretization
template<class TypeTag>
struct SpatialDiscretizationSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::EcfvDiscretization;
};
//! for ebos, use automatic differentiation to linearize the system of PDEs
template<class TypeTag>
struct LocalLinearizerSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::AutoDiffLocalLinearizer;
};
template<class TypeTag>
struct BaseDiscretizationType<TypeTag, TTag::EclBaseProblem> {
using type = FvBaseDiscretizationNoAdapt<TypeTag>;
};
template<class TypeTag>
struct DiscreteFunction<TypeTag, TTag::EclBaseProblem> {
using BaseDiscretization = FvBaseDiscretization<TypeTag>;
using type = typename BaseDiscretization::BlockVectorWrapper;
};
template<class TypeTag>
struct GridView<TypeTag, TTag::EclBaseProblem>
{
using type = typename GetPropType<TypeTag, Properties::Grid>::LeafGridView;
};
// Set the material law for fluid fluxes
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Traits = ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using EclMaterialLawManager = ::Opm::EclMaterialLawManager<Traits>;
using type = typename EclMaterialLawManager::MaterialLaw;
};
// Set the material law for energy storage in rock
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
using type = typename EclThermalLawManager::SolidEnergyLaw;
};
// Set the material law for thermal conduction
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
using type = typename EclThermalLawManager::ThermalConductionLaw;
};
// ebos can use a slightly faster stencil class because it does not need the normals and
// the integration points of intersections
template<class TypeTag>
struct Stencil<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
public:
using type = EcfvStencil<Scalar,
GridView,
/*needIntegrationPos=*/false,
/*needNormal=*/false>;
};
// by default use the dummy aquifer "model"
template<class TypeTag>
struct EclAquiferModel<TypeTag, TTag::EclBaseProblem> {
using type = EclBaseAquiferModel<TypeTag>;
};
// Enable aquifers by default in experimental mode
template<class TypeTag>
struct EclEnableAquifers<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable diffusion
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// only write the solutions for the report steps to disk
template<class TypeTag>
struct EnableWriteAllSolutions<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable API tracking
template<class TypeTag>
struct EnableApiTracking<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default for the end time of the simulation [s]
//
// By default, stop it after the universe will probably have stopped
// to exist. (the ECL problem will finish the simulation explicitly
// after it simulated the last episode specified in the deck.)
template<class TypeTag>
struct EndTime<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e100;
};
// The default for the initial time step size of the simulation [s].
//
// The chosen value means that the size of the first time step is the
// one of the initial episode (if the length of the initial episode is
// not millions of trillions of years, that is...)
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24;
};
// the default for the allowed volumetric error for oil per second
template<class TypeTag>
struct NewtonTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-2;
};
// the tolerated amount of "incorrect" amount of oil per time step for the complete
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
// will tolerate larger residuals.
template<class TypeTag>
struct EclNewtonSumTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-4;
};
// set the exponent for the volume scaling of the sum tolerance: larger reservoirs can
// tolerate a higher amount of mass lost per time step than smaller ones! since this is
// not linear, we use the cube root of the overall pore volume by default, i.e., the
// value specified by the NewtonSumTolerance parameter is the "incorrect" mass per
// timestep for an reservoir that exhibits 1 m^3 of pore volume. A reservoir with a total
// pore volume of 10^3 m^3 will tolerate 10 times as much.
template<class TypeTag>
struct EclNewtonSumToleranceExponent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0/3.0;
};
// set number of Newton iterations where the volumetric residual is considered for
// convergence
template<class TypeTag>
struct EclNewtonStrictIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 8;
};
// set fraction of the pore volume where the volumetric residual may be violated during
// strict Newton iterations
template<class TypeTag>
struct EclNewtonRelaxedVolumeFraction<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.03;
};
// the maximum volumetric error of a cell in the relaxed region
template<class TypeTag>
struct EclNewtonRelaxedTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e9;
};
// Ignore the maximum error mass for early termination of the newton method.
template<class TypeTag>
struct NewtonMaxError<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 10e9;
};
// set the maximum number of Newton iterations to 14 because the likelyhood that a time
// step succeeds at more than 14 Newton iteration is rather small
template<class TypeTag>
struct NewtonMaxIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 14;
};
// also, reduce the target for the "optimum" number of Newton iterations to 6. Note that
// this is only relevant if the time step is reduced from the report step size for some
// reason. (because ebos first tries to do a report step using a single time step.)
template<class TypeTag>
struct NewtonTargetIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 6;
};
// Disable the VTK output by default for this problem ...
template<class TypeTag>
struct EnableVtkOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// ... but enable the ECL output by default
template<class TypeTag>
struct EnableEclOutput<TypeTag,TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#ifdef HAVE_DAMARIS
//! Enable the Damaris output by default
template<class TypeTag>
struct EnableDamarisOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// If Damaris is available, write specific variable output in parallel
template<class TypeTag>
struct EnableDamarisOutputCollective<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#endif
// If available, write the ECL output in a non-blocking manner
template<class TypeTag>
struct EnableAsyncEclOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Write ESMRY file for fast loading of summary data
template<class TypeTag>
struct EnableEsmry<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, use single precision for the ECL formated results
template<class TypeTag>
struct EclOutputDoublePrecision<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default location for the ECL output files
template<class TypeTag>
struct OutputDir<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = ".";
};
// the cache for intensive quantities can be used for ECL problems and also yields a
// decent speedup...
template<class TypeTag>
struct EnableIntensiveQuantityCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// the cache for the storage term can also be used and also yields a decent speedup
template<class TypeTag>
struct EnableStorageCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
template<class TypeTag>
struct FluxModule<TypeTag, TTag::EclBaseProblem> {
using type = EclTransFluxModule<TypeTag>;
};
// Use the dummy gradient calculator in order not to do unnecessary work.
template<class TypeTag>
struct GradientCalculator<TypeTag, TTag::EclBaseProblem> {
using type = EclDummyGradientCalculator<TypeTag>;
};
// Use a custom Newton-Raphson method class for ebos in order to attain more
// sophisticated update and error computation mechanisms
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::EclBaseProblem> {
using type = EclNewtonMethod<TypeTag>;
};
// The frequency of writing restart (*.ers) files. This is the number of time steps
// between writing restart files
template<class TypeTag>
struct RestartWritingInterval<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 0xffffff; // disable
};
// Drift compensation is an experimental feature, i.e., systematic errors in the
// conservation quantities are only compensated for
// as default if experimental mode is enabled.
template<class TypeTag>
struct EclEnableDriftCompensation<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// By default, we enable the debugging checks if we're compiled in debug mode
template<class TypeTag>
struct EnableDebuggingChecks<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// store temperature (but do not conserve energy, as long as EnableEnergy is false)
template<class TypeTag>
struct EnableTemperature<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
template<class TypeTag>
struct EnableMech<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
template<class TypeTag>
struct EnablePolymer<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSolvent<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableFoam<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableExtbo<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableMICP<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable thermal flux boundaries by default
template<class TypeTag>
struct EnableThermalFluxBoundaries<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, simulators derived from the EclBaseProblem are production simulators,
// i.e., experimental features must be explicitly enabled at compile time
template<class TypeTag>
struct EnableExperiments<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// set defaults for the time stepping parameters
template<class TypeTag>
struct EclMaxTimeStepSizeAfterWellEvent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24*365.25;
};
template<class TypeTag>
struct EclRestartShrinkFactor<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3;
};
template<class TypeTag>
struct EclEnableTuning<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct OutputMode<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = "all";
};
// Parameterize equilibration accuracy
template<class TypeTag>
struct NumPressurePointsEquil<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = ParserKeywords::EQLDIMS::DEPTH_NODES_P::defaultValue;
};
} // namespace Opm::Properties
#endif // ECL_PROBLEM_PROPERTIES_HH