opm-simulators/opm/polymer/polymerUtilities.cpp

422 lines
19 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/polymer/polymerUtilities.hpp>
#include <opm/core/utility/miscUtilities.hpp>
namespace Opm
{
/// @brief Computes total mobility for a set of s/c values.
/// @param[in] props rock and fluid properties
/// @param[in] polyprops polymer properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[in] c polymer concentration
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector<int>& cells,
const std::vector<double>& s,
const std::vector<double>& c,
const std::vector<double>& cmax,
std::vector<double>& totmob)
{
int num_cells = cells.size();
totmob.resize(num_cells);
std::vector<double> kr(2*num_cells);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* visc = props.viscosity();
for (int cell = 0; cell < num_cells; ++cell) {
double* kr_cell = &kr[2*cell];
polyprops.effectiveTotalMobility(c[cell], cmax[cell], visc, kr_cell,
totmob[cell]);
}
}
/// @brief Computes total mobility and omega for a set of s/c values.
/// @param[in] props rock and fluid properties
/// @param[in] polyprops polymer properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[in] c polymer concentration
/// @param[out] totmob total mobility
/// @param[out] omega mobility-weighted (or fractional-flow weighted)
/// fluid densities.
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector<int>& cells,
const std::vector<double>& s,
const std::vector<double>& c,
const std::vector<double>& cmax,
std::vector<double>& totmob,
std::vector<double>& omega)
{
int num_cells = cells.size();
int num_phases = props.numPhases();
totmob.resize(num_cells);
omega.resize(num_cells);
assert(int(s.size()) == num_cells*num_phases);
std::vector<double> kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* visc = props.viscosity();
const double* rho = props.density();
double mob[2]; // here we assume num_phases=2
for (int cell = 0; cell < num_cells; ++cell) {
double* kr_cell = &kr[2*cell];
polyprops.effectiveMobilities(c[cell], cmax[cell], visc, kr_cell,
mob);
totmob[cell] = mob[0] + mob[1];
omega[cell] = rho[0]*mob[0]/totmob[cell] + rho[1]*mob[1]/totmob[cell];
}
}
/// Computes the fractional flow for each cell in the cells argument
/// @param[in] props rock and fluid properties
/// @param[in] polyprops polymer properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[in] c concentration values
/// @param[in] cmax max polymer concentration experienced by cell
/// @param[out] fractional_flow the fractional flow for each phase for each cell.
void computeFractionalFlow(const Opm::IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector<int>& cells,
const std::vector<double>& s,
const std::vector<double>& c,
const std::vector<double>& cmax,
std::vector<double>& fractional_flows)
{
int num_cells = cells.size();
int num_phases = props.numPhases();
if (num_phases != 2) {
OPM_THROW(std::runtime_error, "computeFractionalFlow() assumes 2 phases.");
}
fractional_flows.resize(num_cells*num_phases);
assert(int(s.size()) == num_cells*num_phases);
std::vector<double> kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* visc = props.viscosity();
double mob[2]; // here we assume num_phases=2
for (int cell = 0; cell < num_cells; ++cell) {
double* kr_cell = &kr[2*cell];
polyprops.effectiveMobilities(c[cell], cmax[cell], visc, kr_cell, mob);
fractional_flows[2*cell] = mob[0] / (mob[0] + mob[1]);
fractional_flows[2*cell + 1] = mob[1] / (mob[0] + mob[1]);
}
}
/// Computes the fractional flow for each cell in the cells argument
/// @param[in] props rock and fluid properties
/// @param[in] polyprops polymer properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] p pressure (one value per cell)
/// @param[in] z surface-volume values (for all P phases)
/// @param[in] s saturation values (for all phases)
/// @param[in] c concentration values
/// @param[in] cmax max polymer concentration experienced by cell
/// @param[out] fractional_flow the fractional flow for each phase for each cell.
void computeFractionalFlow(const Opm::BlackoilPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector<int>& cells,
const std::vector<double>& p,
const std::vector<double>& T,
const std::vector<double>& z,
const std::vector<double>& s,
const std::vector<double>& c,
const std::vector<double>& cmax,
std::vector<double>& fractional_flows)
{
int num_cells = cells.size();
int num_phases = props.numPhases();
if (num_phases != 2) {
OPM_THROW(std::runtime_error, "computeFractionalFlow() assumes 2 phases.");
}
fractional_flows.resize(num_cells*num_phases);
assert(int(s.size()) == num_cells*num_phases);
std::vector<double> kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
std::vector<double> mu(num_cells*num_phases);
props.viscosity(num_cells, &p[0], &T[0], &z[0], &cells[0], &mu[0], 0);
double mob[2]; // here we assume num_phases=2
for (int cell = 0; cell < num_cells; ++cell) {
double* kr_cell = &kr[2*cell];
double* mu_cell = &mu[2*cell];
polyprops.effectiveMobilities(c[cell], cmax[cell], mu_cell, kr_cell, mob);
fractional_flows[2*cell] = mob[0] / (mob[0] + mob[1]);
fractional_flows[2*cell + 1] = mob[1] / (mob[0] + mob[1]);
}
}
/// @brief Computes injected and produced volumes of all phases,
/// and injected and produced polymer mass.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] state state variables (pressure, fluxes etc.)
/// @param[in] src if < 0: total reservoir volume outflow,
/// if > 0: first phase reservoir volume inflow.
/// @param[in] inj_c injected concentration by cell
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
/// @param[out] polyinj injected mass of polymer
/// @param[out] polyprod produced mass of polymer
void computeInjectedProduced(const IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const PolymerState& state,
const std::vector<double>& transport_src,
const std::vector<double>& inj_c,
const double dt,
double* injected,
double* produced,
double& polyinj,
double& polyprod)
{
const int num_cells = transport_src.size();
if (props.numCells() != num_cells) {
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
}
const int np = props.numPhases();
if (int(state.saturation().size()) != num_cells*np) {
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
}
const std::vector<double>& s = state.saturation();
const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
const std::vector<double>& cmax = state.getCellData( state.CMAX );
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
polyinj = 0.0;
polyprod = 0.0;
const double* visc = props.viscosity();
std::vector<double> kr_cell(np);
double mob[2];
double mc;
for (int cell = 0; cell < num_cells; ++cell) {
if (transport_src[cell] > 0.0) {
injected[0] += transport_src[cell]*dt;
polyinj += transport_src[cell]*dt*inj_c[cell];
} else if (transport_src[cell] < 0.0) {
const double flux = -transport_src[cell]*dt;
const double* sat = &s[np*cell];
props.relperm(1, sat, &cell, &kr_cell[0], 0);
polyprops.effectiveMobilities(c[cell], cmax[cell], visc,
&kr_cell[0], mob);
double totmob = mob[0] + mob[1];
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
polyprops.computeMc(c[cell], mc);
polyprod += (mob[0]/totmob)*flux*mc;
}
}
}
/// @brief Computes injected and produced volumes of all phases,
/// and injected and produced polymer mass - in the compressible case.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] state state variables (pressure, fluxes etc.)
/// @param[in] transport_src if < 0: total reservoir volume outflow,
/// if > 0: first phase *surface volume* inflow.
/// @param[in] inj_c injected concentration by cell
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/transport_src.size().
/// @param[out] produced must also point to a valid array with P elements.
/// @param[out] polyinj injected mass of polymer
/// @param[out] polyprod produced mass of polymer
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const PolymerBlackoilState& state,
const std::vector<double>& transport_src,
const std::vector<double>& inj_c,
const double dt,
double* injected,
double* produced,
double& polyinj,
double& polyprod)
{
const int num_cells = transport_src.size();
if (props.numCells() != num_cells) {
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
}
const int np = props.numPhases();
if (int(state.saturation().size()) != num_cells*np) {
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
}
const std::vector<double>& press = state.pressure();
const std::vector<double>& temp = state.temperature();
const std::vector<double>& s = state.saturation();
const std::vector<double>& z = state.surfacevol();
const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
const std::vector<double>& cmax = state.getCellData( state.CMAX );
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
polyinj = 0.0;
polyprod = 0.0;
std::vector<double> visc(np);
std::vector<double> kr_cell(np);
std::vector<double> mob(np);
std::vector<double> A(np*np);
std::vector<double> prod_resv_phase(np);
std::vector<double> prod_surfvol(np);
double mc;
for (int cell = 0; cell < num_cells; ++cell) {
if (transport_src[cell] > 0.0) {
// Inflowing transport source is a surface volume flux
// for the first phase.
injected[0] += transport_src[cell]*dt;
polyinj += transport_src[cell]*dt*inj_c[cell];
} else if (transport_src[cell] < 0.0) {
// Outflowing transport source is a total reservoir
// volume flux.
const double flux = -transport_src[cell]*dt;
const double* sat = &s[np*cell];
props.relperm(1, sat, &cell, &kr_cell[0], 0);
props.viscosity(1, &press[cell], &temp[cell], &z[np*cell], &cell, &visc[0], 0);
props.matrix(1, &press[cell], &temp[cell], &z[np*cell], &cell, &A[0], 0);
polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0],
&kr_cell[0], &mob[0]);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
totmob += mob[p];
}
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
for (int p = 0; p < np; ++p) {
prod_resv_phase[p] = (mob[p]/totmob)*flux;
for (int q = 0; q < np; ++q) {
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
}
}
for (int p = 0; p < np; ++p) {
produced[p] += prod_surfvol[p];
}
polyprops.computeMc(c[cell], mc);
polyprod += produced[0]*mc;
}
}
}
/// @brief Computes total polymer mass over all grid cells.
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration
/// @param[in] dps dead pore space
/// @return total polymer mass in grid.
double computePolymerMass(const std::vector<double>& pv,
const std::vector<double>& s,
const std::vector<double>& c,
const double dps)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
OPM_THROW(std::runtime_error, "Sizes of s and pv vectors do not match.");
}
double polymass = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
polymass += c[cell]*s[np*cell + 0]*pv[cell]*(1 - dps);
}
return polymass;
}
/// @brief Computes total absorbed polymer mass over all grid cells.
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] pv the pore volume by cell.
/// @param[in] cmax max polymer concentration for cell
/// @return total absorbed polymer mass.
double computePolymerAdsorbed(const IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector<double>& pv,
const std::vector<double>& cmax)
{
const int num_cells = pv.size();
const double rhor = polyprops.rockDensity();
const double* poro = props.porosity();
double abs_mass = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
double c_ads;
polyprops.simpleAdsorption(cmax[cell], c_ads);
abs_mass += c_ads*pv[cell]*((1.0 - poro[cell])/poro[cell])*rhor;
}
return abs_mass;
}
/// @brief Computes total absorbed polymer mass over all grid cells.
/// With compressibility
/// @param[in] grid grid
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] state fluid state variable
/// @param[in] rock_comp rock compressibility (depends on pressure)
/// @return total absorbed polymer mass.
double computePolymerAdsorbed(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const PolymerBlackoilState& state,
const RockCompressibility* rock_comp
)
{
const int num_cells = props.numCells();
const double rhor = polyprops.rockDensity();
std::vector<double> porosity;
if (rock_comp && rock_comp->isActive()) {
computePorosity(grid, props.porosity(), *rock_comp, state.pressure(), porosity);
} else {
porosity.assign(props.porosity(), props.porosity() + num_cells);
}
double abs_mass = 0.0;
const std::vector<double>& cmax = state.getCellData( state.CMAX );
for (int cell = 0; cell < num_cells; ++cell) {
double c_ads;
polyprops.simpleAdsorption(cmax[cell], c_ads);
abs_mass += c_ads*grid.cell_volumes[cell]*(1.0 - porosity[cell])*rhor;
}
return abs_mass;
}
} // namespace Opm