opm-simulators/opm/autodiff/WellStateFullyImplicitBlackoil.hpp
Tor Harald Sandve b9bc4b00cb Make the wellModel self-contained
The wellModel is now persistent over the time steps,
with an update method called every reportStep/episode.

This allows the following simplifications:

    1. move the wellState to the WellModel
    2. add a ref to the ebosSimulator to the wellModel
    3. clean up the parameters passed to the wellModel methods
    4. move RESV handling to the WellModel and the rateConverter
    5. move the econLimit update to the WellModel
2017-11-08 13:57:36 +01:00

567 lines
26 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
#include <string>
#include <utility>
#include <map>
#include <algorithm>
#include <array>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
: public WellState
{
typedef WellState BaseType;
public:
typedef BaseType :: WellMapType WellMapType;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
template <class State, class PrevWellState>
void init(const Wells* wells, const State& state, const PrevWellState& prevState, const PhaseUsage& pu)
{
init(wells, state.pressure(), prevState, pu);
}
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
template <class PrevWellState>
void init(const Wells* wells, const std::vector<double>& cellPressures , const PrevWellState& prevState, const PhaseUsage& pu)
{
// call init on base class
BaseType :: init(wells, cellPressures);
// if there are no well, do nothing in init
if (wells == 0) {
return;
}
const int nw = wells->number_of_wells;
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const int np = wells->number_of_phases;
const int nperf = wells->well_connpos[nw];
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_stopped(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
perfPress()[perf] = cellPressures[wells->well_cells[perf]];
}
}
}
// Initialize current_controls_.
// The controls set in the Wells object are treated as defaults,
// and also used for initial values.
current_controls_.resize(nw);
for (int w = 0; w < nw; ++w) {
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
}
is_new_well_.resize(nw, true);
perfRateSolvent_.clear();
perfRateSolvent_.resize(nperf, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
// this is not a new added well
is_new_well_[w] = false;
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// bhp
bhp()[ newIndex ] = prevState.bhp()[ oldIndex ];
// thp
thp()[ newIndex ] = prevState.thp()[ oldIndex ];
// wellrates
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState.wellRates()[ oldidx ];
}
// perfPhaseRates
const int oldPerf_idx_beg = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
// copy perforation rates when the number of perforations is equal,
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
if( num_perf_old_well == num_perf_this_well )
{
int old_perf_phase_idx = oldPerf_idx_beg *np;
for (int perf_phase_idx = wells->well_connpos[ newIndex ]*np;
perf_phase_idx < wells->well_connpos[ newIndex + 1]*np; ++perf_phase_idx, ++old_perf_phase_idx )
{
perfPhaseRates()[ perf_phase_idx ] = prevState.perfPhaseRates()[ old_perf_phase_idx ];
}
} else {
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfPress()[ perf ] = prevState.perfPress()[ oldPerf_idx ];
}
}
// perfSolventRates
if (pu.has_solvent) {
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfRateSolvent()[ perf ] = prevState.perfRateSolvent()[ oldPerf_idx ];
}
}
}
}
// If in the new step, there is no THP related target/limit anymore, its thp value should be
// set to zero.
const WellControls* ctrl = wells->ctrls[w];
const int nwc = well_controls_get_num(ctrl);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == THP) {
break;
}
}
// not finding any thp related control/limits
if (ctrl_index == nwc) {
thp()[w] = 0.;
}
}
}
{
// we need to create a trival segment related values to avoid there will be some
// multi-segment wells added later.
top_segment_index_.reserve(nw);
for (int w = 0; w < nw; ++w) {
top_segment_index_.push_back(w);
}
segpress_ = bhp();
segrates_ = wellRates();
}
}
template <class State>
void resize(const Wells* wells, const State& state, const PhaseUsage& pu) {
const WellStateFullyImplicitBlackoil dummy_state{}; // Init with an empty previous state only resizes
init(wells, state, dummy_state, pu) ;
}
/// One rate per phase and well connection.
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per well.
std::vector<int>& currentControls() { return current_controls_; }
const std::vector<int>& currentControls() const { return current_controls_; }
data::Wells report(const PhaseUsage &pu) const override {
data::Wells res = WellState::report(pu);
const int nw = this->numWells();
if( nw == 0 ) return res;
const int np = pu.num_phases;
using rt = data::Rates::opt;
std::vector< rt > phs( np );
if( pu.phase_used[BlackoilPhases::Aqua] ) {
phs.at( pu.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( pu.phase_used[BlackoilPhases::Liquid] ) {
phs.at( pu.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
phs.at( pu.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
if (pu.has_solvent) {
// add solvent component
for( int w = 0; w < nw; ++w ) {
res.at( wells_->name[ w ]).rates.set( rt::solvent, solventWellRate(w) );
}
}
/* this is a reference or example on **how** to convert from
* WellState to something understood by opm-output. it is intended
* to be properly implemented and maintained as a part of
* simulators, as it relies on simulator internals, details and
* representations.
*/
for( const auto& wt : this->wellMap() ) {
const auto w = wt.second[ 0 ];
auto& well = res.at( wt.first );
well.control = this->currentControls()[ w ];
int local_comp_index = 0;
for( auto& comp : well.completions ) {
const auto rates = this->perfPhaseRates().begin()
+ (np * wt.second[ 1 ])
+ (np * local_comp_index);
++local_comp_index;
for( int i = 0; i < np; ++i ) {
comp.rates.set( phs[ i ], *(rates + i) );
}
}
assert(local_comp_index == this->wells_->well_connpos[ w + 1 ] - this->wells_->well_connpos[ w ]);
}
return res;
}
/// init the MS well related.
template <typename PrevWellState>
void initWellStateMSWell(const Wells* wells, const std::vector<const Well*>& wells_ecl,
const int time_step, const PhaseUsage& pu, const PrevWellState& prev_well_state)
{
// still using the order in wells
const int nw = wells->number_of_wells;
if (nw == 0) {
return;
}
top_segment_index_.clear();
top_segment_index_.reserve(nw);
segpress_.clear();
segpress_.reserve(nw);
segrates_.clear();
segrates_.reserve(nw * numPhases());
nseg_ = 0;
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
// what we do here, is to set the segment rates and perforation rates
for (int w = 0; w < nw; ++w) {
const int nw_wells_ecl = wells_ecl.size();
int index_well_ecl = 0;
const std::string well_name(wells->name[w]);
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
if (well_name == wells_ecl[index_well_ecl]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well_ecl == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl[index_well_ecl];
top_segment_index_.push_back(nseg_);
if ( !well_ecl->isMultiSegment(time_step) ) { // not multi-segment well
nseg_ += 1;
segpress_.push_back(bhp()[w]);
const int np = numPhases();
for (int p = 0; p < np; ++p) {
segrates_.push_back(wellRates()[np * w + p]);
}
} else { // it is a multi-segment well
const SegmentSet& segment_set = well_ecl->getSegmentSet(time_step);
// assuming the order of the perforations in well_ecl is the same with Wells
const CompletionSet& completion_set = well_ecl->getCompletions(time_step);
// number of segment for this single well
const int well_nseg = segment_set.numberSegment();
const int nperf = completion_set.size();
nseg_ += well_nseg;
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
// that is why I think we should use a well model to initialize the WellState here
std::vector<std::vector<int>> segment_perforations(well_nseg);
for (int perf = 0; perf < nperf; ++perf) {
const Completion& completion = completion_set.get(perf);
const int segment_number = completion.getSegmentNumber();
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
segment_perforations[segment_index].push_back(perf);
}
std::vector<std::vector<int>> segment_inlets(well_nseg);
for (int seg = 0; seg < well_nseg; ++seg) {
const Segment& segment = segment_set[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
segment_inlets[outlet_segment_index].push_back(segment_index);
}
}
// for the segrates_, now it becomes a recursive solution procedure.
{
const int np = numPhases();
const int start_perf = wells->well_connpos[w];
const int start_perf_next_well = wells->well_connpos[w + 1];
assert(nperf == (start_perf_next_well - start_perf)); // make sure the information from wells_ecl consistent with wells
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour];
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
// it will probably benefit the standard well too, while it needs to be justified
// TODO: to see if this strategy can benefit StandardWell too
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
// maybe the best way is to initialize the fractions first then get the rates
for (int perf = 0; perf < nperf; perf++) {
const int perf_pos = start_perf + perf;
perfPhaseRates()[np * perf_pos + gaspos] *= 100.;
}
}
const std::vector<double> perforation_rates(perfPhaseRates().begin() + np * start_perf,
perfPhaseRates().begin() + np * start_perf_next_well); // the perforation rates for this well
std::vector<double> segment_rates;
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(segrates_));
}
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
// which requres the ordering is successful
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
// improved during the solveWellEq process
{
// top segment is always the first one, and its pressure is the well bhp
segpress_.push_back(bhp()[w]);
const int top_segment = top_segment_index_[w];
const int start_perf = wells->well_connpos[w];
for (int seg = 1; seg < well_nseg; ++seg) {
if ( !segment_perforations[seg].empty() ) {
const int first_perf = segment_perforations[seg][0];
segpress_.push_back(perfPress()[start_perf + first_perf]);
} else {
// segpress_.push_back(bhp); // may not be a good decision
// using the outlet segment pressure // it needs the ordering is correct
const int outlet_seg = segment_set[seg].outletSegment();
segpress_.push_back(segpress_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
}
}
}
}
}
assert(int(segpress_.size()) == nseg_);
assert(int(segrates_.size()) == nseg_ * numPhases() );
if (!prev_well_state.wellMap().empty()) {
// copying MS well related
const auto& end = prev_well_state.wellMap().end();
const int np = numPhases();
for (int w = 0; w < nw; ++w) {
const std::string name( wells->name[w] );
const auto& it = prev_well_state.wellMap().find( name );
if (it != end) { // the well is found in the prev_well_state
// TODO: the well with same name can change a lot, like they might not have same number of segments
// we need to handle that later.
// for now, we just copy them.
const int old_index_well = (*it).second[0];
const int new_index_well = w;
const int old_top_segment_index = prev_well_state.topSegmentIndex(old_index_well);
const int new_top_segmnet_index = topSegmentIndex(new_index_well);
int number_of_segment = 0;
// if it is the last well in list
if (new_index_well == int(top_segment_index_.size()) - 1) {
number_of_segment = nseg_ - new_top_segmnet_index;
} else {
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segmnet_index;
}
for (int i = 0; i < number_of_segment * np; ++i) {
segrates_[new_top_segmnet_index * np + i] = prev_well_state.segRates()[old_top_segment_index * np + i];
}
for (int i = 0; i < number_of_segment; ++i) {
segpress_[new_top_segmnet_index + i] = prev_well_state.segPress()[old_top_segment_index + i];
}
}
}
}
}
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates)
{
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
// the first segment is always the top segment, its rates should be equal to the well rates.
assert(segment_inlets.size() == segment_perforations.size());
const int well_nseg = segment_inlets.size();
if (segment == 0) { // beginning the calculation
segment_rates.resize(np * well_nseg, 0.0);
}
// contributions from the perforations belong to this segment
for (const int& perf : segment_perforations[segment]) {
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
}
}
for (const int& inlet_seg : segment_inlets[segment]) {
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
}
}
}
bool isNewWell(const int w) const {
return is_new_well_[w];
}
void setNewWell(const int w, const bool is_new_well) {
is_new_well_[w] = is_new_well;
}
/// One rate pr well connection.
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
/// One rate pr well
double solventWellRate(const int w) const {
double solvent_well_rate = 0.0;
for (int perf = wells_->well_connpos[w]; perf < wells_->well_connpos[w+1]; ++perf ) {
solvent_well_rate += perfRateSolvent_[perf];
}
return solvent_well_rate;
}
const std::vector<double>& segRates() const
{
return segrates_;
}
std::vector<double>& segRates()
{
return segrates_;
}
const std::vector<double>& segPress() const
{
return segpress_;
}
std::vector<double>& segPress()
{
return segpress_;
}
int numSegment() const
{
return nseg_;
}
int topSegmentIndex(const int w) const
{
assert(w < int(top_segment_index_.size()) );
return top_segment_index_[w];
}
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;
std::vector<double> perfRateSolvent_;
// marking whether the well is just added
// for newly added well, the current initialized rates from WellState
// will have very wrong compositions for production wells, will mostly cause
// problem with VFP interpolation
std::vector<bool> is_new_well_;
// MS well related
// for StandardWell, the number of segments will be one
std::vector<double> segrates_;
std::vector<double> segpress_;
// the index of the top segments, which is used to locate the
// multisegment well related information in WellState
std::vector<int> top_segment_index_;
int nseg_; // total number of the segments
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED