mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 18:51:57 -06:00
341 lines
12 KiB
C++
341 lines
12 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2017 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef OPM_WELLINTERFACE_HEADER_INCLUDED
|
|
#define OPM_WELLINTERFACE_HEADER_INCLUDED
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
|
|
#include <opm/core/wells.h>
|
|
#include <opm/core/well_controls.h>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/wells/WellsManager.hpp>
|
|
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
#include <opm/autodiff/VFPInjProperties.hpp>
|
|
#include <opm/autodiff/VFPProdProperties.hpp>
|
|
#include <opm/autodiff/WellHelpers.hpp>
|
|
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
|
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
|
#include <opm/autodiff/RateConverter.hpp>
|
|
|
|
#include <opm/simulators/WellSwitchingLogger.hpp>
|
|
|
|
#include<dune/common/fmatrix.hh>
|
|
#include<dune/istl/bcrsmatrix.hh>
|
|
#include<dune/istl/matrixmatrix.hh>
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
#include <string>
|
|
#include <memory>
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
template<typename TypeTag>
|
|
class WellInterface
|
|
{
|
|
public:
|
|
|
|
using WellState = WellStateFullyImplicitBlackoil;
|
|
|
|
typedef BlackoilModelParameters ModelParameters;
|
|
|
|
static const int Water = BlackoilPhases::Aqua;
|
|
static const int Oil = BlackoilPhases::Liquid;
|
|
static const int Gas = BlackoilPhases::Vapour;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
|
|
static const int numEq = Indices::numEq;
|
|
typedef double Scalar;
|
|
|
|
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
|
|
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
|
|
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
|
typedef Dune::BlockVector<VectorBlockType> BVector;
|
|
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
|
|
|
|
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
|
|
|
|
static const bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
|
|
static const bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
|
|
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
|
|
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
|
|
|
|
// For the conversion between the surface volume rate and resrevoir voidage rate
|
|
using RateConverterType = RateConverter::
|
|
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
|
|
|
|
/// Constructor
|
|
WellInterface(const Well* well, const int time_step, const Wells* wells,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components);
|
|
|
|
/// Virutal destructor
|
|
virtual ~WellInterface() {}
|
|
|
|
/// Well name.
|
|
const std::string& name() const;
|
|
|
|
/// Well cells.
|
|
const std::vector<int>& cells() {return well_cells_; }
|
|
|
|
/// Well type, INJECTOR or PRODUCER.
|
|
WellType wellType() const;
|
|
|
|
/// Well controls
|
|
WellControls* wellControls() const;
|
|
|
|
void setVFPProperties(const VFPProperties* vfp_properties_arg);
|
|
|
|
virtual void init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const double gravity_arg,
|
|
const int num_cells);
|
|
|
|
virtual void initPrimaryVariablesEvaluation() const = 0;
|
|
|
|
/// a struct to collect information about the convergence checking
|
|
struct ConvergenceReport {
|
|
struct ProblemWell {
|
|
std::string well_name;
|
|
std::string phase_name;
|
|
};
|
|
bool converged = true;
|
|
bool nan_residual_found = false;
|
|
std::vector<ProblemWell> nan_residual_wells;
|
|
// We consider Inf is large residual here
|
|
bool too_large_residual_found = false;
|
|
std::vector<ProblemWell> too_large_residual_wells;
|
|
|
|
ConvergenceReport& operator+=(const ConvergenceReport& rhs) {
|
|
converged = converged && rhs.converged;
|
|
nan_residual_found = nan_residual_found || rhs.nan_residual_found;
|
|
if (rhs.nan_residual_found) {
|
|
for (const ProblemWell& well : rhs.nan_residual_wells) {
|
|
nan_residual_wells.push_back(well);
|
|
}
|
|
}
|
|
too_large_residual_found = too_large_residual_found || rhs.too_large_residual_found;
|
|
if (rhs.too_large_residual_found) {
|
|
for (const ProblemWell& well : rhs.too_large_residual_wells) {
|
|
too_large_residual_wells.push_back(well);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
virtual ConvergenceReport getWellConvergence(const std::vector<double>& B_avg) const = 0;
|
|
|
|
virtual void solveEqAndUpdateWellState(WellState& well_state) = 0;
|
|
|
|
virtual void assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells) = 0;
|
|
|
|
void updateListEconLimited(const WellState& well_state,
|
|
DynamicListEconLimited& list_econ_limited) const;
|
|
|
|
void setWellEfficiencyFactor(const double efficiency_factor);
|
|
|
|
void computeRepRadiusPerfLength(const Grid& grid, const std::map<int, int>& cartesian_to_compressed);
|
|
|
|
/// using the solution x to recover the solution xw for wells and applying
|
|
/// xw to update Well State
|
|
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
|
|
WellState& well_state) const = 0;
|
|
|
|
/// Ax = Ax - C D^-1 B x
|
|
virtual void apply(const BVector& x, BVector& Ax) const = 0;
|
|
|
|
/// r = r - C D^-1 Rw
|
|
virtual void apply(BVector& r) const = 0;
|
|
|
|
// TODO: before we decide to put more information under mutable, this function is not const
|
|
virtual void computeWellPotentials(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_potentials) = 0;
|
|
|
|
virtual void updateWellStateWithTarget(WellState& well_state) const = 0;
|
|
|
|
void updateWellControl(WellState& well_state,
|
|
wellhelpers::WellSwitchingLogger& logger) const;
|
|
|
|
virtual void updatePrimaryVariables(const WellState& well_state) const = 0;
|
|
|
|
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
|
|
const WellState& well_state) = 0; // should be const?
|
|
|
|
/// \brief Wether the Jacobian will also have well contributions in it.
|
|
virtual bool jacobianContainsWellContributions() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// updating the voidage rates in well_state when requested
|
|
void calculateReservoirRates(WellState& well_state) const;
|
|
|
|
// Add well contributions to matrix
|
|
virtual void addWellContributions(Mat&) const
|
|
{}
|
|
protected:
|
|
|
|
// to indicate a invalid connection
|
|
static const int INVALIDCONNECTION = -100000;
|
|
|
|
const Well* well_ecl_;
|
|
|
|
const int current_step_;
|
|
|
|
// the index of well in Wells struct
|
|
int index_of_well_;
|
|
|
|
// simulation parameters
|
|
const ModelParameters& param_;
|
|
|
|
// well type
|
|
// INJECTOR or PRODUCER
|
|
enum WellType well_type_;
|
|
|
|
// number of phases
|
|
int number_of_phases_;
|
|
|
|
// component fractions for each well
|
|
// typically, it should apply to injection wells
|
|
std::vector<double> comp_frac_;
|
|
|
|
// controls for this well
|
|
struct WellControls* well_controls_;
|
|
|
|
// number of the perforations for this well
|
|
int number_of_perforations_;
|
|
|
|
// record the index of the first perforation
|
|
// of states of individual well.
|
|
int first_perf_;
|
|
|
|
// well index for each perforation
|
|
std::vector<double> well_index_;
|
|
|
|
// depth for each perforation
|
|
std::vector<double> perf_depth_;
|
|
|
|
// reference depth for the BHP
|
|
double ref_depth_;
|
|
|
|
double well_efficiency_factor_;
|
|
|
|
// cell index for each well perforation
|
|
std::vector<int> well_cells_;
|
|
|
|
// saturation table nubmer for each well perforation
|
|
std::vector<int> saturation_table_number_;
|
|
|
|
// representative radius of the perforations, used in shear calculation
|
|
std::vector<double> perf_rep_radius_;
|
|
|
|
// length of the perforations, use in shear calculation
|
|
std::vector<double> perf_length_;
|
|
|
|
// well bore diameter
|
|
std::vector<double> bore_diameters_;
|
|
|
|
const PhaseUsage* phase_usage_;
|
|
|
|
bool getAllowCrossFlow() const;
|
|
|
|
const VFPProperties* vfp_properties_;
|
|
|
|
double gravity_;
|
|
|
|
// For the conversion between the surface volume rate and resrevoir voidage rate
|
|
const RateConverterType& rateConverter_;
|
|
|
|
// The pvt region of the well. We assume
|
|
// We assume a well to not penetrate more than one pvt region.
|
|
const int pvtRegionIdx_;
|
|
|
|
const int num_components_;
|
|
|
|
const PhaseUsage& phaseUsage() const;
|
|
|
|
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
|
|
|
|
int ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const;
|
|
|
|
double wsolvent() const;
|
|
|
|
double wpolymer() const;
|
|
|
|
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state) const;
|
|
|
|
bool wellHasTHPConstraints() const;
|
|
|
|
// Component fractions for each phase for the well
|
|
const std::vector<double>& compFrac() const;
|
|
|
|
double mostStrictBhpFromBhpLimits() const;
|
|
|
|
// a tuple type for ratio limit check.
|
|
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
|
|
// values should not be used.
|
|
// second value indicates whehter there is only one connection left.
|
|
// third value indicates the indx of the worst-offending connection.
|
|
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
|
|
// the ratio of the actual value to the value of the violated limit.
|
|
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
|
|
|
|
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state) const;
|
|
|
|
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state) const;
|
|
|
|
double scalingFactor(const int comp_idx) const;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#include "WellInterface_impl.hpp"
|
|
|
|
#endif // OPM_WELLINTERFACE_HEADER_INCLUDED
|