opm-simulators/opm/autodiff/BlackoilWellModel.hpp
Andreas Lauser b5cddef928 flow: switch it to use the eWoms parameter system
this has several advanges:

- a consistent and complete help message is now printed by passing the
  -h or --help command line parameters. most notably this allows to
  generically implement tab completion of parameters for bash
- the full list of runtime parameters can now be printed before the simulator
  has been run.
- all runtime parameters understood by ebos can be specified
- no hacks to marry the two parameter systems anymore
- command parameters now follow the standard unix convention, i.e.,
  `--param-name=value` instead of `param_name=value`

on the negative side, some parameters have been renamed and the syntax
has changed so calls to `flow` that specify parameters must adapted.
2018-08-15 23:34:32 +02:00

362 lines
15 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <tuple>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/WellTestState.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/core/wells/WellCollection.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/WellHelpers.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/WellInterface.hpp>
#include <opm/autodiff/StandardWell.hpp>
#include <opm/autodiff/MultisegmentWell.hpp>
#include <opm/autodiff/Compat.hpp>
#include<opm/autodiff/SimFIBODetails.hpp>
#include<dune/common/fmatrix.hh>
#include<dune/istl/bcrsmatrix.hh>
#include<dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/simulators/WellSwitchingLogger.hpp>
namespace Opm {
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilWellModel {
public:
// --------- Types ---------
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
static const int numEq = Indices::numEq;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::BlockVector<VectorBlockType> BVector;
#if DUNE_VERSION_NEWER_REV(DUNE_ISTL, 2 , 5, 1)
// 3x3 matrix block inversion was unstable from at least 2.3 until and
// including 2.5.0
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
#else
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
#endif
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
BlackoilWellModel(Simulator& ebosSimulator,
const ModelParameters& param,
const bool terminal_output);
void initFromRestartFile(const RestartValue& restartValues)
{
// gives a dummy dynamic_list_econ_limited
DynamicListEconLimited dummyListEconLimited;
const auto& defunctWellNames = ebosSimulator_.vanguard().defunctWellNames();
WellsManager wellsmanager(eclState(),
schedule(),
// The restart step value is used to identify wells present at the given
// time step. Wells that are added at the same time step as RESTART is initiated
// will not be present in a restart file. Use the previous time step to retrieve
// wells that have information written to the restart file.
std::max(eclState().getInitConfig().getRestartStep() - 1, 0),
Opm::UgGridHelpers::numCells(grid()),
Opm::UgGridHelpers::globalCell(grid()),
Opm::UgGridHelpers::cartDims(grid()),
Opm::UgGridHelpers::dimensions(grid()),
Opm::UgGridHelpers::cell2Faces(grid()),
Opm::UgGridHelpers::beginFaceCentroids(grid()),
dummyListEconLimited,
grid().comm().size() > 1,
defunctWellNames);
const Wells* wells = wellsmanager.c_wells();
const int nw = wells->number_of_wells;
if (nw > 0) {
auto phaseUsage = phaseUsageFromDeck(eclState());
size_t numCells = Opm::UgGridHelpers::numCells(grid());
well_state_.resize(wells, numCells, phaseUsage); //Resize for restart step
wellsToState(restartValues.wells, phaseUsage, well_state_);
previous_well_state_ = well_state_;
}
}
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble(const int iterationIdx,
const double dt);
// substract Binv(D)rw from r;
void apply( BVector& r) const;
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) const;
// apply well model with scaling of alpha
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
void recoverWellSolutionAndUpdateWellState(const BVector& x);
// Check if well equations is converged.
bool getWellConvergence(const std::vector<Scalar>& B_avg) const;
// return all the wells.
const WellCollection& wellCollection() const;
// return non const reference to all the wells.
WellCollection& wellCollection();
// return the internal well state, ignore the passed one.
// Used by the legacy code to make it compatible with the legacy well models.
const WellState& wellState(const WellState& well_state OPM_UNUSED) const;
// return the internal well state
const WellState& wellState() const;
// only use this for restart.
void setRestartWellState(const WellState& well_state);
// called at the beginning of a time step
void beginTimeStep(const int timeStepIdx,const double simulationTime);
// called at the end of a time step
void timeStepSucceeded(const double& simulationTime);
// called at the beginning of a report step
void beginReportStep(const int time_step);
// called at the end of a report step
void endReportStep();
const SimulatorReport& lastReport() const;
void addWellContributions(Mat& mat)
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(mat);
}
}
protected:
void extractLegacyPressure_(std::vector<double>& cellPressure) const
{
size_t nc = number_of_cells_;
std::vector<double> cellPressures(nc, 0.0);
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.vanguard().gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
cellPressures[cellIdx] = p;
}
}
Simulator& ebosSimulator_;
std::unique_ptr<WellsManager> wells_manager_;
std::vector< const Well* > wells_ecl_;
bool wells_active_;
using WellInterfacePtr = std::unique_ptr<WellInterface<TypeTag> >;
// a vector of all the wells.
std::vector<WellInterfacePtr > well_container_;
using ConvergenceReport = typename WellInterface<TypeTag>::ConvergenceReport;
// create the well container
std::vector<WellInterfacePtr > createWellContainer(const int time_step);
WellState well_state_;
WellState previous_well_state_;
const ModelParameters param_;
bool terminal_output_;
bool has_solvent_;
bool has_polymer_;
std::vector<int> pvt_region_idx_;
PhaseUsage phase_usage_;
size_t global_nc_;
// the number of the cells in the local grid
size_t number_of_cells_;
double gravity_;
std::vector<double> depth_;
bool initial_step_;
std::unique_ptr<RateConverterType> rateConverter_;
std::unique_ptr<VFPProperties> vfp_properties_;
SimulatorReport last_report_;
WellTestState wellTestState_;
// used to better efficiency of calcuation
mutable BVector scaleAddRes_;
const Wells* wells() const { return wells_manager_->c_wells(); }
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
const Schedule& schedule() const
{ return ebosSimulator_.vanguard().schedule(); }
void updateWellControls();
void updateGroupControls();
// setting the well_solutions_ based on well_state.
void updatePrimaryVariables();
void setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const;
void computeRepRadiusPerfLength(const Grid& grid);
void computeAverageFormationFactor(std::vector<double>& B_avg) const;
void applyVREPGroupControl();
void computeWellVoidageRates(std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const;
// Calculating well potentials for each well
void computeWellPotentials(std::vector<double>& well_potentials);
const std::vector<double>& wellPerfEfficiencyFactors() const;
void calculateEfficiencyFactors();
// it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation()
// makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions
// twice at the beginning of the time step
/// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated
/// at the beginning of the time step and no derivatives are included in these quantities
void calculateExplicitQuantities() const;
SimulatorReport solveWellEq(const double dt);
void initPrimaryVariablesEvaluation() const;
// The number of components in the model.
int numComponents() const;
int numWells() const;
int numPhases() const;
void resetWellControlFromState() const;
void assembleWellEq(const double dt,
bool only_wells);
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep();
void prepareGroupControl();
void computeRESV(const std::size_t step);
void extractLegacyCellPvtRegionIndex_();
void extractLegacyDepth_();
/// return true if wells are available in the reservoir
bool wellsActive() const;
void setWellsActive(const bool wells_active);
/// return true if wells are available on this process
bool localWellsActive() const;
/// upate the wellTestState related to economic limits
void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const;
void updatePerforationIntensiveQuantities();
void wellTesting(const int timeStepIdx, const double simulationTime);
};
} // namespace Opm
#include "BlackoilWellModel_impl.hpp"
#endif