mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-24 16:30:02 -06:00
270 lines
9.9 KiB
C++
270 lines
9.9 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::MultiPhaseBaseModel
|
|
*/
|
|
#ifndef EWOMS_MULTI_PHASE_BASE_MODEL_HH
|
|
#define EWOMS_MULTI_PHASE_BASE_MODEL_HH
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
|
|
|
|
#include <opm/material/thermal/NullSolidEnergyLaw.hpp>
|
|
#include <opm/material/thermal/NullThermalConductionLaw.hpp>
|
|
|
|
#include <opm/models/common/flux.hh>
|
|
#include <opm/models/common/multiphasebaseparameters.hh>
|
|
#include <opm/models/common/multiphasebaseproperties.hh>
|
|
#include <opm/models/common/multiphasebaseproblem.hh>
|
|
#include <opm/models/common/multiphasebaseextensivequantities.hh>
|
|
|
|
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
|
|
|
|
#include <opm/models/io/vtkmultiphasemodule.hpp>
|
|
#include <opm/models/io/vtktemperaturemodule.hpp>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class MultiPhaseBaseModel;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
//! The generic type tag for problems using the immiscible multi-phase model
|
|
// Create new type tags
|
|
namespace TTag {
|
|
|
|
struct MultiPhaseBaseModel {};
|
|
|
|
} // end namespace TTag
|
|
|
|
//! Specify the splices of the MultiPhaseBaseModel type tag
|
|
template<class TypeTag>
|
|
struct Splices<TypeTag, TTag::MultiPhaseBaseModel>
|
|
{
|
|
using type = std::tuple<GetSplicePropType<TypeTag, TTag::MultiPhaseBaseModel, Properties::SpatialDiscretizationSplice>>;
|
|
};
|
|
|
|
//! Set the default spatial discretization
|
|
//!
|
|
//! We use a vertex centered finite volume method by default
|
|
template<class TypeTag>
|
|
struct SpatialDiscretizationSplice<TypeTag, TTag::MultiPhaseBaseModel> { using type = TTag::VcfvDiscretization; };
|
|
|
|
//! set the number of equations to the number of phases
|
|
template<class TypeTag>
|
|
struct NumEq<TypeTag, TTag::MultiPhaseBaseModel> { static constexpr int value = GetPropType<TypeTag, Properties::Indices>::numEq; };
|
|
//! The number of phases is determined by the fluid system
|
|
template<class TypeTag>
|
|
struct NumPhases<TypeTag, TTag::MultiPhaseBaseModel> { static constexpr int value = GetPropType<TypeTag, Properties::FluidSystem>::numPhases; };
|
|
//! Number of chemical species in the system
|
|
template<class TypeTag>
|
|
struct NumComponents<TypeTag, TTag::MultiPhaseBaseModel> { static constexpr int value = GetPropType<TypeTag, Properties::FluidSystem>::numComponents; };
|
|
|
|
//! The type of the base base class for actual problems
|
|
template<class TypeTag>
|
|
struct BaseProblem<TypeTag, TTag::MultiPhaseBaseModel> { using type = MultiPhaseBaseProblem<TypeTag>; };
|
|
|
|
//! By default, use the Darcy relation to determine the phase velocity
|
|
template<class TypeTag>
|
|
struct FluxModule<TypeTag, TTag::MultiPhaseBaseModel> { using type = DarcyFluxModule<TypeTag>; };
|
|
|
|
/*!
|
|
* \brief Set the material law to the null law by default.
|
|
*/
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::MultiPhaseBaseModel>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Traits = NullMaterialTraits<Scalar, FluidSystem::numPhases>;
|
|
|
|
public:
|
|
using type = NullMaterial<Traits>;
|
|
};
|
|
|
|
/*!
|
|
* \brief Set the property for the material parameters by extracting
|
|
* it from the material law.
|
|
*/
|
|
template<class TypeTag>
|
|
struct MaterialLawParams<TypeTag, TTag::MultiPhaseBaseModel>
|
|
{ using type = typename GetPropType<TypeTag, Properties::MaterialLaw>::Params; };
|
|
|
|
//! set the energy storage law for the solid to the one which assumes zero heat capacity
|
|
//! by default
|
|
template<class TypeTag>
|
|
struct SolidEnergyLaw<TypeTag, TTag::MultiPhaseBaseModel>
|
|
{ using type = NullSolidEnergyLaw<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
//! extract the type of the parameter objects for the solid energy storage law from the
|
|
//! law itself
|
|
template<class TypeTag>
|
|
struct SolidEnergyLawParams<TypeTag, TTag::MultiPhaseBaseModel>
|
|
{ using type = typename GetPropType<TypeTag, Properties::SolidEnergyLaw>::Params; };
|
|
|
|
//! set the thermal conduction law to a dummy one by default
|
|
template<class TypeTag>
|
|
struct ThermalConductionLaw<TypeTag, TTag::MultiPhaseBaseModel>
|
|
{ using type = NullThermalConductionLaw<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
//! extract the type of the parameter objects for the thermal conduction law from the law
|
|
//! itself
|
|
template<class TypeTag>
|
|
struct ThermalConductionLawParams<TypeTag, TTag::MultiPhaseBaseModel>
|
|
{ using type = typename GetPropType<TypeTag, Properties::ThermalConductionLaw>::Params; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup MultiPhaseBaseModel
|
|
* \brief A base class for fully-implicit multi-phase porous-media flow models
|
|
* which assume multiple fluid phases.
|
|
*/
|
|
template <class TypeTag>
|
|
class MultiPhaseBaseModel : public GetPropType<TypeTag, Properties::Discretization>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::Discretization>;
|
|
using Implementation = GetPropType<TypeTag, Properties::Model>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
using ElementIterator = typename GridView::template Codim<0>::Iterator;
|
|
using Element = typename GridView::template Codim<0>::Entity;
|
|
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
|
|
public:
|
|
MultiPhaseBaseModel(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the immiscible model.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
// register runtime parameters of the VTK output modules
|
|
VtkMultiPhaseModule<TypeTag>::registerParameters();
|
|
VtkTemperatureModule<TypeTag>::registerParameters();
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns true iff a fluid phase is used by the model.
|
|
*
|
|
* \param phaseIdx The index of the fluid phase in question
|
|
*/
|
|
bool phaseIsConsidered(unsigned) const
|
|
{ return true; }
|
|
|
|
/*!
|
|
* \brief Compute the total storage inside one phase of all
|
|
* conservation quantities.
|
|
*
|
|
* \copydetails Doxygen::storageParam
|
|
* \copydetails Doxygen::phaseIdxParam
|
|
*/
|
|
void globalPhaseStorage(EqVector& storage, unsigned phaseIdx)
|
|
{
|
|
assert(phaseIdx < numPhases);
|
|
|
|
storage = 0;
|
|
|
|
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(this->gridView());
|
|
std::mutex mutex;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
// Attention: the variables below are thread specific and thus cannot be
|
|
// moved in front of the #pragma!
|
|
unsigned threadId = ThreadManager::threadId();
|
|
ElementContext elemCtx(this->simulator_);
|
|
ElementIterator elemIt = threadedElemIt.beginParallel();
|
|
EqVector tmp;
|
|
|
|
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
|
|
const Element& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue; // ignore ghost and overlap elements
|
|
|
|
elemCtx.updateStencil(elem);
|
|
elemCtx.updateIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
|
|
|
|
for (unsigned dofIdx = 0; dofIdx < elemCtx.numDof(/*timeIdx=*/0); ++dofIdx) {
|
|
const auto& scv = stencil.subControlVolume(dofIdx);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
|
|
|
|
tmp = 0;
|
|
this->localResidual(threadId).addPhaseStorage(tmp,
|
|
elemCtx,
|
|
dofIdx,
|
|
/*timeIdx=*/0,
|
|
phaseIdx);
|
|
tmp *= scv.volume()*intQuants.extrusionFactor();
|
|
|
|
mutex.lock();
|
|
storage += tmp;
|
|
mutex.unlock();
|
|
}
|
|
}
|
|
}
|
|
|
|
storage = this->gridView_.comm().sum(storage);
|
|
}
|
|
|
|
void registerOutputModules_()
|
|
{
|
|
ParentType::registerOutputModules_();
|
|
|
|
// add the VTK output modules which make sense for all multi-phase models
|
|
this->addOutputModule(new VtkMultiPhaseModule<TypeTag>(this->simulator_));
|
|
this->addOutputModule(new VtkTemperatureModule<TypeTag>(this->simulator_));
|
|
}
|
|
|
|
private:
|
|
const Implementation& asImp_() const
|
|
{ return *static_cast<const Implementation *>(this); }
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|