mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-12 01:11:55 -06:00
410 lines
15 KiB
C++
410 lines
15 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::MultiPhaseBaseProblem
|
|
*/
|
|
#ifndef EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
|
|
#define EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
|
|
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <dune/grid/common/partitionset.hh>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
|
|
#include <opm/material/common/Means.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
#include <opm/models/common/directionalmobility.hh>
|
|
#include <opm/models/common/multiphasebaseparameters.hh>
|
|
#include <opm/models/common/multiphasebaseproperties.hh>
|
|
|
|
#include <opm/models/discretization/common/fvbaseproblem.hh>
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
|
|
#include <opm/utility/CopyablePtr.hpp>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup Discretization
|
|
*
|
|
* \brief The base class for the problems of ECFV discretizations which deal
|
|
* with a multi-phase flow through a porous medium.
|
|
*/
|
|
template<class TypeTag>
|
|
class MultiPhaseBaseProblem
|
|
: public FvBaseProblem<TypeTag>
|
|
, public GetPropType<TypeTag, Properties::FluxModule>::FluxBaseProblem
|
|
{
|
|
//! \cond SKIP_THIS
|
|
using ParentType = FvBaseProblem<TypeTag>;
|
|
|
|
using Implementation = GetPropType<TypeTag, Properties::Problem>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;
|
|
using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
|
|
using MaterialLawParams = typename GetPropType<TypeTag, Properties::MaterialLaw>::Params;
|
|
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
//! \endcond
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Problem::FvBaseProblem(Simulator& )
|
|
*/
|
|
MultiPhaseBaseProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{ init_(); }
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the problem and the model.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::Register<Parameters::EnableGravity>
|
|
("Use the gravity correction for the pressure gradients.");
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the intrinsic permeability of an intersection.
|
|
*
|
|
* This method is specific to the finite volume discretizations. If left unspecified,
|
|
* it calls the intrinsicPermeability() method for the intersection's interior and
|
|
* exterior finite volumes and averages them harmonically. Note that if this function
|
|
* is defined, the intrinsicPermeability() method does not need to be defined by the
|
|
* problem (if a finite-volume discretization is used).
|
|
*/
|
|
template <class Context>
|
|
void intersectionIntrinsicPermeability(DimMatrix& result,
|
|
const Context& context,
|
|
unsigned intersectionIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const auto& scvf = context.stencil(timeIdx).interiorFace(intersectionIdx);
|
|
|
|
const DimMatrix& K1 = asImp_().intrinsicPermeability(context, scvf.interiorIndex(), timeIdx);
|
|
const DimMatrix& K2 = asImp_().intrinsicPermeability(context, scvf.exteriorIndex(), timeIdx);
|
|
|
|
// entry-wise harmonic mean. this is almost certainly wrong if
|
|
// you have off-main diagonal entries in your permeabilities!
|
|
for (unsigned i = 0; i < dimWorld; ++i)
|
|
for (unsigned j = 0; j < dimWorld; ++j)
|
|
result[i][j] = harmonicMean(K1[i][j], K2[i][j]);
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
// \{
|
|
|
|
/*!
|
|
* \brief Returns the intrinsic permeability tensor \f$[m^2]\f$ at a given position
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("Not implemented: Problem::intrinsicPermeability()");
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the porosity [] of the porous medium for a given
|
|
* control volume.
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("Not implemented: Problem::porosity()");
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the parameter object for the energy storage law of the solid in a
|
|
* sub-control volume.
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
const SolidEnergyLawParams&
|
|
solidEnergyParams(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("Not implemented: Problem::solidEnergyParams()");
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the parameter object for the thermal conductivity law in a
|
|
* sub-control volume.
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
const ThermalConductionLawParams&
|
|
thermalConductionParams(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("Not implemented: Problem::thermalConductionParams()");
|
|
}
|
|
|
|
/*!
|
|
* \brief Define the tortuosity.
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
Scalar tortuosity(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("Not implemented: Problem::tortuosity()");
|
|
}
|
|
|
|
/*!
|
|
* \brief Define the dispersivity.
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
Scalar dispersivity(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("Not implemented: Problem::dispersivity()");
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the material law parameters \f$\mathrm{[K]}\f$ within a control volume.
|
|
*
|
|
* If you get a compiler error at this method, you set the
|
|
* MaterialLaw property to something different than
|
|
* Opm::NullMaterialLaw. In this case, you have to overload the
|
|
* matererialLaw() method in the derived class!
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &
|
|
materialLawParams(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{
|
|
static MaterialLawParams dummy;
|
|
return dummy;
|
|
}
|
|
|
|
template <class FluidState>
|
|
void updateRelperms([[maybe_unused]] std::array<Evaluation,numPhases>& mobility,
|
|
[[maybe_unused]] DirectionalMobilityPtr& dirMob,
|
|
[[maybe_unused]] FluidState& fluidState,
|
|
[[maybe_unused]] unsigned globalSpaceIdx) const
|
|
{}
|
|
|
|
/*!
|
|
* \brief Returns the temperature \f$\mathrm{[K]}\f$ within a control volume.
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{ return asImp_().temperature(); }
|
|
|
|
/*!
|
|
* \brief Returns the temperature \f$\mathrm{[K]}\f$ for an isothermal problem.
|
|
*
|
|
* This is not specific to the discretization. By default it just
|
|
* throws an exception so it must be overloaded by the problem if
|
|
* no energy equation is to be used.
|
|
*/
|
|
Scalar temperature() const
|
|
{ throw std::logic_error("Not implemented:temperature() method not implemented by the actual problem"); }
|
|
|
|
|
|
/*!
|
|
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
|
|
*
|
|
* \param context Reference to the object which represents the
|
|
* current execution context.
|
|
* \param spaceIdx The local index of spatial entity defined by the context
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
const DimVector& gravity(const Context&,
|
|
unsigned,
|
|
unsigned) const
|
|
{ return asImp_().gravity(); }
|
|
|
|
/*!
|
|
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
|
|
*
|
|
* This method is used for problems where the gravitational
|
|
* acceleration does not depend on the spatial position. The
|
|
* default behaviour is that if the <tt>EnableGravity</tt>
|
|
* property is true, \f$\boldsymbol{g} = ( 0,\dots,\ -9.81)^T \f$ holds,
|
|
* else \f$\boldsymbol{g} = ( 0,\dots, 0)^T \f$.
|
|
*/
|
|
const DimVector& gravity() const
|
|
{ return gravity_; }
|
|
|
|
/*!
|
|
* \brief Mark grid cells for refinement or coarsening
|
|
*
|
|
* \return The number of elements marked for refinement or coarsening.
|
|
*/
|
|
unsigned markForGridAdaptation()
|
|
{
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
|
|
unsigned numMarked = 0;
|
|
ElementContext elemCtx( this->simulator() );
|
|
auto gridView = this->simulator().vanguard().gridView();
|
|
auto& grid = this->simulator().vanguard().grid();
|
|
for (const auto& element : elements(gridView, Dune::Partitions::interior)) {
|
|
elemCtx.updateAll(element);
|
|
|
|
// HACK: this should better be part of an AdaptionCriterion class
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar minSat = 1e100 ;
|
|
Scalar maxSat = -1e100;
|
|
size_t nDofs = elemCtx.numDof(/*timeIdx=*/0);
|
|
for (unsigned dofIdx = 0; dofIdx < nDofs; ++dofIdx)
|
|
{
|
|
const auto& intQuant = elemCtx.intensiveQuantities( dofIdx, /*timeIdx=*/0 );
|
|
minSat = std::min(minSat,
|
|
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
|
|
maxSat = std::max(maxSat,
|
|
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
|
|
}
|
|
|
|
const Scalar indicator =
|
|
(maxSat - minSat)/(std::max<Scalar>(0.01, maxSat+minSat)/2);
|
|
if( indicator > 0.2 && element.level() < 2 ) {
|
|
grid.mark( 1, element );
|
|
++ numMarked;
|
|
}
|
|
else if ( indicator < 0.025 ) {
|
|
grid.mark( -1, element );
|
|
++ numMarked;
|
|
}
|
|
else
|
|
{
|
|
grid.mark( 0, element );
|
|
}
|
|
}
|
|
}
|
|
|
|
// get global sum so that every proc is on the same page
|
|
numMarked = this->simulator().vanguard().grid().comm().sum( numMarked );
|
|
|
|
return numMarked;
|
|
}
|
|
|
|
// \}
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Converts a Scalar value to an isotropic Tensor
|
|
*
|
|
* This is convenient e.g. for specifying intrinsic permebilities:
|
|
* \code{.cpp}
|
|
* auto permTensor = this->toDimMatrix_(1e-12);
|
|
* \endcode
|
|
*
|
|
* \param val The scalar value which should be expressed as a tensor
|
|
*/
|
|
DimMatrix toDimMatrix_(Scalar val) const
|
|
{
|
|
DimMatrix ret(0.0);
|
|
for (unsigned i = 0; i < DimMatrix::rows; ++i)
|
|
ret[i][i] = val;
|
|
return ret;
|
|
}
|
|
|
|
DimVector gravity_;
|
|
|
|
private:
|
|
//! Returns the implementation of the problem (i.e. static polymorphism)
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation *>(this); }
|
|
//! \copydoc asImp_()
|
|
const Implementation& asImp_() const
|
|
{ return *static_cast<const Implementation *>(this); }
|
|
|
|
void init_()
|
|
{
|
|
gravity_ = 0.0;
|
|
if (Parameters::Get<Parameters::EnableGravity>()) {
|
|
gravity_[dimWorld-1] = -9.81;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|