opm-simulators/opm/models/common/multiphasebaseproblem.hh
2024-08-14 09:30:45 +02:00

410 lines
15 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::MultiPhaseBaseProblem
*/
#ifndef EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
#define EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/grid/common/partitionset.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/common/Means.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/models/common/directionalmobility.hh>
#include <opm/models/common/multiphasebaseparameters.hh>
#include <opm/models/common/multiphasebaseproperties.hh>
#include <opm/models/discretization/common/fvbaseproblem.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/utility/CopyablePtr.hpp>
namespace Opm {
/*!
* \ingroup Discretization
*
* \brief The base class for the problems of ECFV discretizations which deal
* with a multi-phase flow through a porous medium.
*/
template<class TypeTag>
class MultiPhaseBaseProblem
: public FvBaseProblem<TypeTag>
, public GetPropType<TypeTag, Properties::FluxModule>::FluxBaseProblem
{
//! \cond SKIP_THIS
using ParentType = FvBaseProblem<TypeTag>;
using Implementation = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;
using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
using MaterialLawParams = typename GetPropType<TypeTag, Properties::MaterialLaw>::Params;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
//! \endcond
public:
/*!
* \copydoc Problem::FvBaseProblem(Simulator& )
*/
MultiPhaseBaseProblem(Simulator& simulator)
: ParentType(simulator)
{ init_(); }
/*!
* \brief Register all run-time parameters for the problem and the model.
*/
static void registerParameters()
{
ParentType::registerParameters();
Parameters::Register<Parameters::EnableGravity>
("Use the gravity correction for the pressure gradients.");
}
/*!
* \brief Returns the intrinsic permeability of an intersection.
*
* This method is specific to the finite volume discretizations. If left unspecified,
* it calls the intrinsicPermeability() method for the intersection's interior and
* exterior finite volumes and averages them harmonically. Note that if this function
* is defined, the intrinsicPermeability() method does not need to be defined by the
* problem (if a finite-volume discretization is used).
*/
template <class Context>
void intersectionIntrinsicPermeability(DimMatrix& result,
const Context& context,
unsigned intersectionIdx,
unsigned timeIdx) const
{
const auto& scvf = context.stencil(timeIdx).interiorFace(intersectionIdx);
const DimMatrix& K1 = asImp_().intrinsicPermeability(context, scvf.interiorIndex(), timeIdx);
const DimMatrix& K2 = asImp_().intrinsicPermeability(context, scvf.exteriorIndex(), timeIdx);
// entry-wise harmonic mean. this is almost certainly wrong if
// you have off-main diagonal entries in your permeabilities!
for (unsigned i = 0; i < dimWorld; ++i)
for (unsigned j = 0; j < dimWorld; ++j)
result[i][j] = harmonicMean(K1[i][j], K2[i][j]);
}
/*!
* \name Problem parameters
*/
// \{
/*!
* \brief Returns the intrinsic permeability tensor \f$[m^2]\f$ at a given position
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: Problem::intrinsicPermeability()");
}
/*!
* \brief Returns the porosity [] of the porous medium for a given
* control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar porosity(const Context&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: Problem::porosity()");
}
/*!
* \brief Returns the parameter object for the energy storage law of the solid in a
* sub-control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyParams(const Context&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: Problem::solidEnergyParams()");
}
/*!
* \brief Returns the parameter object for the thermal conductivity law in a
* sub-control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const ThermalConductionLawParams&
thermalConductionParams(const Context&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: Problem::thermalConductionParams()");
}
/*!
* \brief Define the tortuosity.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar tortuosity(const Context&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: Problem::tortuosity()");
}
/*!
* \brief Define the dispersivity.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar dispersivity(const Context&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: Problem::dispersivity()");
}
/*!
* \brief Returns the material law parameters \f$\mathrm{[K]}\f$ within a control volume.
*
* If you get a compiler error at this method, you set the
* MaterialLaw property to something different than
* Opm::NullMaterialLaw. In this case, you have to overload the
* matererialLaw() method in the derived class!
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const MaterialLawParams &
materialLawParams(const Context&,
unsigned,
unsigned) const
{
static MaterialLawParams dummy;
return dummy;
}
template <class FluidState>
void updateRelperms([[maybe_unused]] std::array<Evaluation,numPhases>& mobility,
[[maybe_unused]] DirectionalMobilityPtr& dirMob,
[[maybe_unused]] FluidState& fluidState,
[[maybe_unused]] unsigned globalSpaceIdx) const
{}
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ within a control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar temperature(const Context&,
unsigned,
unsigned) const
{ return asImp_().temperature(); }
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ for an isothermal problem.
*
* This is not specific to the discretization. By default it just
* throws an exception so it must be overloaded by the problem if
* no energy equation is to be used.
*/
Scalar temperature() const
{ throw std::logic_error("Not implemented:temperature() method not implemented by the actual problem"); }
/*!
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const DimVector& gravity(const Context&,
unsigned,
unsigned) const
{ return asImp_().gravity(); }
/*!
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
*
* This method is used for problems where the gravitational
* acceleration does not depend on the spatial position. The
* default behaviour is that if the <tt>EnableGravity</tt>
* property is true, \f$\boldsymbol{g} = ( 0,\dots,\ -9.81)^T \f$ holds,
* else \f$\boldsymbol{g} = ( 0,\dots, 0)^T \f$.
*/
const DimVector& gravity() const
{ return gravity_; }
/*!
* \brief Mark grid cells for refinement or coarsening
*
* \return The number of elements marked for refinement or coarsening.
*/
unsigned markForGridAdaptation()
{
using Toolbox = MathToolbox<Evaluation>;
unsigned numMarked = 0;
ElementContext elemCtx( this->simulator() );
auto gridView = this->simulator().vanguard().gridView();
auto& grid = this->simulator().vanguard().grid();
for (const auto& element : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updateAll(element);
// HACK: this should better be part of an AdaptionCriterion class
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar minSat = 1e100 ;
Scalar maxSat = -1e100;
size_t nDofs = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < nDofs; ++dofIdx)
{
const auto& intQuant = elemCtx.intensiveQuantities( dofIdx, /*timeIdx=*/0 );
minSat = std::min(minSat,
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
maxSat = std::max(maxSat,
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
}
const Scalar indicator =
(maxSat - minSat)/(std::max<Scalar>(0.01, maxSat+minSat)/2);
if( indicator > 0.2 && element.level() < 2 ) {
grid.mark( 1, element );
++ numMarked;
}
else if ( indicator < 0.025 ) {
grid.mark( -1, element );
++ numMarked;
}
else
{
grid.mark( 0, element );
}
}
}
// get global sum so that every proc is on the same page
numMarked = this->simulator().vanguard().grid().comm().sum( numMarked );
return numMarked;
}
// \}
protected:
/*!
* \brief Converts a Scalar value to an isotropic Tensor
*
* This is convenient e.g. for specifying intrinsic permebilities:
* \code{.cpp}
* auto permTensor = this->toDimMatrix_(1e-12);
* \endcode
*
* \param val The scalar value which should be expressed as a tensor
*/
DimMatrix toDimMatrix_(Scalar val) const
{
DimMatrix ret(0.0);
for (unsigned i = 0; i < DimMatrix::rows; ++i)
ret[i][i] = val;
return ret;
}
DimVector gravity_;
private:
//! Returns the implementation of the problem (i.e. static polymorphism)
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
//! \copydoc asImp_()
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
void init_()
{
gravity_ = 0.0;
if (Parameters::Get<Parameters::EnableGravity>()) {
gravity_[dimWorld-1] = -9.81;
}
}
};
} // namespace Opm
#endif