mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-24 16:30:02 -06:00
246 lines
9.4 KiB
C++
246 lines
9.4 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::NcpIntensiveQuantities
|
|
*/
|
|
#ifndef EWOMS_NCP_INTENSIVE_QUANTITIES_HH
|
|
#define EWOMS_NCP_INTENSIVE_QUANTITIES_HH
|
|
|
|
#include "ncpproperties.hh"
|
|
|
|
#include <opm/models/common/energymodule.hh>
|
|
#include <opm/models/common/diffusionmodule.hh>
|
|
|
|
#include <opm/material/constraintsolvers/NcpFlash.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/constraintsolvers/CompositionFromFugacities.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup NcpModel
|
|
* \ingroup IntensiveQuantities
|
|
*
|
|
* \brief Contains the quantities which are are constant within a
|
|
* finite volume in the compositional multi-phase NCP model.
|
|
*/
|
|
template <class TypeTag>
|
|
class NcpIntensiveQuantities
|
|
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
|
|
, public DiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
|
|
, public EnergyIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>() >
|
|
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
|
|
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
|
enum { fugacity0Idx = Indices::fugacity0Idx };
|
|
enum { saturation0Idx = Indices::saturation0Idx };
|
|
enum { pressure0Idx = Indices::pressure0Idx };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
using CompositionFromFugacitiesSolver = Opm::CompositionFromFugacities<Scalar, FluidSystem, Evaluation>;
|
|
using FluidState = Opm::CompositionalFluidState<Evaluation, FluidSystem, /*storeEnthalpy=*/enableEnergy>;
|
|
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
using DiffusionIntensiveQuantities = Opm::DiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
|
|
using EnergyIntensiveQuantities = Opm::EnergyIntensiveQuantities<TypeTag, enableEnergy>;
|
|
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
|
|
|
|
public:
|
|
NcpIntensiveQuantities()
|
|
{}
|
|
|
|
NcpIntensiveQuantities(const NcpIntensiveQuantities& other) = default;
|
|
|
|
NcpIntensiveQuantities& operator=(const NcpIntensiveQuantities& other) = default;
|
|
|
|
/*!
|
|
* \brief IntensiveQuantities::update
|
|
*/
|
|
void update(const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
ParentType::update(elemCtx, dofIdx, timeIdx);
|
|
ParentType::checkDefined();
|
|
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
|
|
|
// set the phase saturations
|
|
Evaluation sumSat = 0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
|
|
const Evaluation& val = priVars.makeEvaluation(saturation0Idx + phaseIdx, timeIdx);
|
|
fluidState_.setSaturation(phaseIdx, val);
|
|
sumSat += val;
|
|
}
|
|
fluidState_.setSaturation(numPhases - 1, 1.0 - sumSat);
|
|
Opm::Valgrind::CheckDefined(sumSat);
|
|
|
|
// set the fluid phase temperature
|
|
EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
|
|
|
|
// retrieve capillary pressure parameters
|
|
const auto& problem = elemCtx.problem();
|
|
const MaterialLawParams& materialParams =
|
|
problem.materialLawParams(elemCtx, dofIdx, timeIdx);
|
|
// calculate capillary pressures
|
|
Evaluation capPress[numPhases];
|
|
MaterialLaw::capillaryPressures(capPress, materialParams, fluidState_);
|
|
// add to the pressure of the first fluid phase
|
|
const Evaluation& pressure0 = priVars.makeEvaluation(pressure0Idx, timeIdx);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fluidState_.setPressure(phaseIdx, pressure0 + (capPress[phaseIdx] - capPress[0]));
|
|
|
|
ComponentVector fug;
|
|
// retrieve component fugacities
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fug[compIdx] = priVars.makeEvaluation(fugacity0Idx + compIdx, timeIdx);
|
|
|
|
// calculate phase compositions
|
|
const auto *hint = elemCtx.thermodynamicHint(dofIdx, timeIdx);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// initial guess
|
|
if (hint) {
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
// use the hint for the initial mole fraction!
|
|
const Evaluation& moleFracIJ = hint->fluidState().moleFraction(phaseIdx, compIdx);
|
|
fluidState_.setMoleFraction(phaseIdx, compIdx, moleFracIJ);
|
|
}
|
|
}
|
|
else // !hint
|
|
CompositionFromFugacitiesSolver::guessInitial(fluidState_, phaseIdx, fug);
|
|
|
|
// calculate the phase composition from the component
|
|
// fugacities
|
|
CompositionFromFugacitiesSolver::solve(fluidState_, paramCache, phaseIdx, fug);
|
|
}
|
|
|
|
// porosity
|
|
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
|
|
Opm::Valgrind::CheckDefined(porosity_);
|
|
|
|
// relative permeabilities
|
|
MaterialLaw::relativePermeabilities(relativePermeability_, materialParams, fluidState_);
|
|
|
|
// dynamic viscosities
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// viscosities
|
|
const Evaluation& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
|
|
fluidState_.setViscosity(phaseIdx, mu);
|
|
|
|
mobility_[phaseIdx] = relativePermeability_[phaseIdx]/mu;
|
|
}
|
|
|
|
// intrinsic permeability
|
|
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the quantities specific for the velocity model
|
|
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
|
|
|
|
// energy related quantities
|
|
EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the diffusion specific quantities of the intensive quantities
|
|
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
|
|
|
|
checkDefined();
|
|
}
|
|
|
|
/*!
|
|
* \brief ImmiscibleIntensiveQuantities::fluidState
|
|
*/
|
|
const FluidState& fluidState() const
|
|
{ return fluidState_; }
|
|
|
|
/*!
|
|
* \brief ImmiscibleIntensiveQuantities::intrinsicPermeability
|
|
*/
|
|
const DimMatrix& intrinsicPermeability() const
|
|
{ return intrinsicPerm_; }
|
|
|
|
/*!
|
|
* \brief ImmiscibleIntensiveQuantities::relativePermeability
|
|
*/
|
|
const Evaluation& relativePermeability(unsigned phaseIdx) const
|
|
{ return relativePermeability_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \brief ImmiscibleIntensiveQuantities::mobility
|
|
*/
|
|
const Evaluation& mobility(unsigned phaseIdx) const
|
|
{ return mobility_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \brief ImmiscibleIntensiveQuantities::porosity
|
|
*/
|
|
const Evaluation& porosity() const
|
|
{ return porosity_; }
|
|
|
|
/*!
|
|
* \brief IntensiveQuantities::checkDefined
|
|
*/
|
|
void checkDefined() const
|
|
{
|
|
#if !defined NDEBUG && HAVE_VALGRIND
|
|
ParentType::checkDefined();
|
|
|
|
Opm::Valgrind::CheckDefined(porosity_);
|
|
Opm::Valgrind::CheckDefined(relativePermeability_);
|
|
|
|
fluidState_.checkDefined();
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
DimMatrix intrinsicPerm_;
|
|
FluidState fluidState_;
|
|
Evaluation porosity_;
|
|
Evaluation relativePermeability_[numPhases];
|
|
Evaluation mobility_[numPhases];
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|