opm-simulators/ebos/eclgenerictracermodel_impl.hh
2023-10-23 18:30:41 +02:00

377 lines
14 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Opm::EclTracerModel
*/
#ifndef EWOMS_ECL_GENERIC_TRACER_MODEL_IMPL_HH
#define EWOMS_ECL_GENERIC_TRACER_MODEL_IMPL_HH
#include <dune/istl/operators.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/schwarz.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/schwarz.hh>
#include <ebos/eclgenerictracermodel.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/grid/CpGrid.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Phase.hpp>
#include <opm/input/eclipse/EclipseState/Tables/TracerVdTable.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTracerProperties.hpp>
#include <opm/models/discretization/ecfv/ecfvstencil.hh>
#include <opm/simulators/linalg/ilufirstelement.hh>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/FlexibleSolver.hpp>
#include <fmt/format.h>
#include <array>
#include <functional>
#include <iostream>
#include <memory>
#include <set>
#include <stdexcept>
#include <string>
namespace Opm {
#if HAVE_MPI
template<class M, class V>
struct TracerSolverSelector
{
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
using TracerOperator = Dune::OverlappingSchwarzOperator<M, V, V, Comm>;
using type = Dune::FlexibleSolver<TracerOperator>;
};
template<class Vector, class Grid, class Matrix>
std::tuple<std::unique_ptr<Dune::OverlappingSchwarzOperator<Matrix,Vector,Vector,
Dune::OwnerOverlapCopyCommunication<int,int>>>,
std::unique_ptr<typename TracerSolverSelector<Matrix,Vector>::type>>
createParallelFlexibleSolver(const Grid&, const Matrix&, const PropertyTree&)
{
OPM_THROW(std::logic_error, "Grid not supported for parallel Tracers.");
return {nullptr, nullptr};
}
template<class Vector, class Matrix>
std::tuple<std::unique_ptr<Dune::OverlappingSchwarzOperator<Matrix,Vector,Vector,
Dune::OwnerOverlapCopyCommunication<int,int>>>,
std::unique_ptr<typename TracerSolverSelector<Matrix,Vector>::type>>
createParallelFlexibleSolver(const Dune::CpGrid& grid, const Matrix& M, const PropertyTree& prm)
{
using TracerOperator = Dune::OverlappingSchwarzOperator<Matrix,Vector,Vector,
Dune::OwnerOverlapCopyCommunication<int,int>>;
using TracerSolver = Dune::FlexibleSolver<TracerOperator>;
const auto& cellComm = grid.cellCommunication();
auto op = std::make_unique<TracerOperator>(M, cellComm);
auto dummyWeights = [](){ return Vector();};
return {std::move(op), std::make_unique<TracerSolver>(*op, cellComm, prm, dummyWeights, 0)};
}
#endif
template<class Grid, class GridView, class DofMapper, class Stencil, class Scalar>
EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
EclGenericTracerModel(const GridView& gridView,
const EclipseState& eclState,
const CartesianIndexMapper& cartMapper,
const DofMapper& dofMapper,
const std::function<std::array<double,dimWorld>(int)> centroids)
: gridView_(gridView)
, eclState_(eclState)
, cartMapper_(cartMapper)
, dofMapper_(dofMapper)
, centroids_(centroids)
{
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
Scalar EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
tracerConcentration(int tracerIdx, int globalDofIdx) const
{
if (tracerConcentration_.empty())
return 0.0;
return tracerConcentration_[tracerIdx][globalDofIdx];
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
void EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
setTracerConcentration(int tracerIdx, int globalDofIdx, Scalar value)
{
this->tracerConcentration_[tracerIdx][globalDofIdx] = value;
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
int EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
numTracers() const
{
return this->eclState_.tracer().size();
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
std::string EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
fname(int tracerIdx) const
{
return this->eclState_.tracer()[tracerIdx].fname();
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
double EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
currentConcentration_(const Well& eclWell, const std::string& name) const
{
return eclWell.getTracerProperties().getConcentration(name);
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
const std::string& EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
name(int tracerIdx) const
{
return this->eclState_.tracer()[tracerIdx].name;
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
void EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
doInit(bool rst, std::size_t numGridDof,
std::size_t gasPhaseIdx, std::size_t oilPhaseIdx, std::size_t waterPhaseIdx)
{
const auto& tracers = eclState_.tracer();
if (tracers.size() == 0)
return; // tracer treatment is supposed to be disabled
// retrieve the number of tracers from the deck
const std::size_t numTracers = tracers.size();
tracerConcentration_.resize(numTracers);
storageOfTimeIndex1_.resize(numTracers);
// the phase where the tracer is
tracerPhaseIdx_.resize(numTracers);
for (std::size_t tracerIdx = 0; tracerIdx < numTracers; tracerIdx++) {
const auto& tracer = tracers[tracerIdx];
if (tracer.phase == Phase::WATER)
tracerPhaseIdx_[tracerIdx] = waterPhaseIdx;
else if (tracer.phase == Phase::OIL)
tracerPhaseIdx_[tracerIdx] = oilPhaseIdx;
else if (tracer.phase == Phase::GAS)
tracerPhaseIdx_[tracerIdx] = gasPhaseIdx;
tracerConcentration_[tracerIdx].resize(numGridDof);
storageOfTimeIndex1_[tracerIdx].resize(numGridDof);
if (rst)
continue;
//TBLK keyword
if (tracer.free_concentration.has_value()){
const auto& free_concentration = tracer.free_concentration.value();
int tblkDatasize = free_concentration.size();
if (tblkDatasize < cartMapper_.cartesianSize()){
throw std::runtime_error("Wrong size of TBLK for" + tracer.name);
}
for (std::size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx) {
int cartDofIdx = cartMapper_.cartesianIndex(globalDofIdx);
tracerConcentration_[tracerIdx][globalDofIdx] = free_concentration[cartDofIdx];
}
}
//TVDPF keyword
else if (tracer.free_tvdp.has_value()) {
const auto& free_tvdp = tracer.free_tvdp.value();
for (std::size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx) {
tracerConcentration_[tracerIdx][globalDofIdx] =
free_tvdp.evaluate("TRACER_CONCENTRATION",
centroids_(globalDofIdx)[2]);
}
} else
throw std::logic_error(fmt::format("Can not initialize tracer: {}", tracer.name));
}
// allocate matrix for storing the Jacobian of the tracer residual
tracerMatrix_ = std::make_unique<TracerMatrix>(numGridDof, numGridDof, TracerMatrix::random);
// find the sparsity pattern of the tracer matrix
using NeighborSet = std::set<unsigned>;
std::vector<NeighborSet> neighbors(numGridDof);
Stencil stencil(gridView_, dofMapper_);
for (const auto& elem : elements(gridView_)) {
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
neighbors[myIdx].insert(neighborIdx);
}
}
}
// allocate space for the rows of the matrix
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx)
tracerMatrix_->setrowsize(dofIdx, neighbors[dofIdx].size());
tracerMatrix_->endrowsizes();
// fill the rows with indices. each degree of freedom talks to
// all of its neighbors. (it also talks to itself since
// degrees of freedom are sometimes quite egocentric.)
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx) {
typename NeighborSet::iterator nIt = neighbors[dofIdx].begin();
typename NeighborSet::iterator nEndIt = neighbors[dofIdx].end();
for (; nIt != nEndIt; ++nIt)
tracerMatrix_->addindex(dofIdx, *nIt);
}
tracerMatrix_->endindices();
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
bool EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
linearSolve_(const TracerMatrix& M, TracerVector& x, TracerVector& b)
{
x = 0.0;
Scalar tolerance = 1e-2;
int maxIter = 100;
int verbosity = 0;
PropertyTree prm;
prm.put("maxiter", maxIter);
prm.put("tol", tolerance);
prm.put("verbosity", verbosity);
prm.put("solver", std::string("bicgstab"));
prm.put("preconditioner.type", std::string("ParOverILU0"));
#if HAVE_MPI
if(gridView_.grid().comm().size() > 1)
{
auto [tracerOperator, solver] =
createParallelFlexibleSolver<TracerVector>(gridView_.grid(), M, prm);
(void) tracerOperator;
Dune::InverseOperatorResult result;
solver->apply(x, b, result);
// return the result of the solver
return result.converged;
}
else
{
#endif
using TracerSolver = Dune::BiCGSTABSolver<TracerVector>;
using TracerOperator = Dune::MatrixAdapter<TracerMatrix,TracerVector,TracerVector>;
using TracerScalarProduct = Dune::SeqScalarProduct<TracerVector>;
using TracerPreconditioner = Dune::SeqILU< TracerMatrix,TracerVector,TracerVector>;
TracerOperator tracerOperator(M);
TracerScalarProduct tracerScalarProduct;
TracerPreconditioner tracerPreconditioner(M, 0, 1); // results in ILU0
TracerSolver solver (tracerOperator, tracerScalarProduct,
tracerPreconditioner, tolerance, maxIter,
verbosity);
Dune::InverseOperatorResult result;
solver.apply(x, b, result);
// return the result of the solver
return result.converged;
#if HAVE_MPI
}
#endif
}
template<class Grid,class GridView, class DofMapper, class Stencil, class Scalar>
bool EclGenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>::
linearSolveBatchwise_(const TracerMatrix& M, std::vector<TracerVector>& x, std::vector<TracerVector>& b)
{
Scalar tolerance = 1e-2;
int maxIter = 100;
int verbosity = 0;
PropertyTree prm;
prm.put("maxiter", maxIter);
prm.put("tol", tolerance);
prm.put("verbosity", verbosity);
prm.put("solver", std::string("bicgstab"));
prm.put("preconditioner.type", std::string("ParOverILU0"));
#if HAVE_MPI
if(gridView_.grid().comm().size() > 1)
{
auto [tracerOperator, solver] =
createParallelFlexibleSolver<TracerVector>(gridView_.grid(), M, prm);
(void) tracerOperator;
bool converged = true;
for (std::size_t nrhs = 0; nrhs < b.size(); ++nrhs) {
x[nrhs] = 0.0;
Dune::InverseOperatorResult result;
solver->apply(x[nrhs], b[nrhs], result);
converged = (converged && result.converged);
}
return converged;
}
else
{
#endif
using TracerSolver = Dune::BiCGSTABSolver<TracerVector>;
using TracerOperator = Dune::MatrixAdapter<TracerMatrix,TracerVector,TracerVector>;
using TracerScalarProduct = Dune::SeqScalarProduct<TracerVector>;
using TracerPreconditioner = Dune::SeqILU< TracerMatrix,TracerVector,TracerVector>;
TracerOperator tracerOperator(M);
TracerScalarProduct tracerScalarProduct;
TracerPreconditioner tracerPreconditioner(M, 0, 1); // results in ILU0
TracerSolver solver (tracerOperator, tracerScalarProduct,
tracerPreconditioner, tolerance, maxIter,
verbosity);
bool converged = true;
for (std::size_t nrhs = 0; nrhs < b.size(); ++nrhs) {
x[nrhs] = 0.0;
Dune::InverseOperatorResult result;
solver.apply(x[nrhs], b[nrhs], result);
converged = (converged && result.converged);
}
// return the result of the solver
return converged;
#if HAVE_MPI
}
#endif
}
} // namespace Opm
#endif