opm-simulators/opm/core/utility/miscUtilities.cpp

167 lines
5.6 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <algorithm>
#include <functional>
namespace Opm
{
/// @brief Computes pore volume of all cells in a grid.
/// @param[in] grid a grid
/// @param[in] props rock and fluid properties
/// @param[out] porevol the pore volume by cell.
void computePorevolume(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
std::vector<double>& porevol)
{
int num_cells = grid.number_of_cells;
ASSERT(num_cells == props.numCells());
porevol.resize(num_cells);
const double* poro = props.porosity();
std::transform(poro, poro + num_cells,
grid.cell_volumes,
porevol.begin(),
std::multiplies<double>());
}
/// @brief Computes total mobility for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[int] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob)
{
int num_cells = cells.size();
int num_phases = props.numPhases();
totmob.resize(num_cells);
ASSERT(int(s.size()) == num_cells*num_phases);
std::vector<double> kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* mu = props.viscosity();
for (int cell = 0; cell < num_cells; ++cell) {
totmob[cell] = 0;
for (int phase = 0; phase < num_phases; ++phase) {
totmob[cell] += kr[num_phases*cell + phase]/mu[phase];
}
}
}
/// @brief Computes total mobility and omega for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[int] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobility
/// @param[out] omega mobility-weighted (or fractional-flow weighted)
/// fluid densities.
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
{
int num_cells = cells.size();
int num_phases = props.numPhases();
totmob.resize(num_cells);
omega.resize(num_cells);
ASSERT(int(s.size()) == num_cells*num_phases);
std::vector<double> kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* mu = props.viscosity();
for (int cell = 0; cell < num_cells; ++cell) {
totmob[cell] = 0.0;
for (int phase = 0; phase < num_phases; ++phase) {
totmob[cell] += kr[num_phases*cell + phase]/mu[phase];
}
}
const double* rho = props.density();
for (int cell = 0; cell < num_cells; ++cell) {
omega[cell] = 0.0;
for (int phase = 0; phase < num_phases; ++phase) {
omega[cell] += rho[phase]*(kr[num_phases*cell + phase]/mu[phase])/totmob[cell];
}
}
}
/// @brief Estimates a scalar cell velocity from face fluxes.
/// @param[in] grid a grid
/// @param[in] face_flux signed per-face fluxes
/// @param[out] cell_velocity the estimated velocities.
void estimateCellVelocity(const UnstructuredGrid& grid,
const std::vector<double>& face_flux,
std::vector<double>& cell_velocity)
{
const int dim = grid.dimensions;
cell_velocity.clear();
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
for (int face = 0; face < grid.number_of_faces; ++face) {
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
const double* fc = &grid.face_centroids[face*dim];
double flux = face_flux[face];
for (int i = 0; i < 2; ++i) {
if (c[i] >= 0) {
const double* cc = &grid.cell_centroids[c[i]*dim];
for (int d = 0; d < dim; ++d) {
double v_contrib = fc[d] - cc[d];
v_contrib *= flux/grid.cell_volumes[c[i]];
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
}
}
}
}
}
/// Extract a vector of water saturations from a vector of
/// interleaved water and oil saturations.
void toWaterSat(const std::vector<double>& sboth,
std::vector<double>& sw)
{
int num = sboth.size()/2;
sw.resize(num);
for (int i = 0; i < num; ++i) {
sw[i] = sboth[2*i];
}
}
/// Make a a vector of interleaved water and oil saturations from
/// a vector of water saturations.
void toBothSat(const std::vector<double>& sw,
std::vector<double>& sboth)
{
int num = sw.size();
sboth.resize(2*num);
for (int i = 0; i < num; ++i) {
sboth[2*i] = sw[i];
sboth[2*i + 1] = 1.0 - sw[i];
}
}
} // namespace Opm