opm-simulators/ebos/eclgenericwriter_impl.hh
2024-02-02 12:53:11 +01:00

680 lines
27 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef EWOMS_ECL_GENERIC_WRITER_IMPL_HH
#define EWOMS_ECL_GENERIC_WRITER_IMPL_HH
#include <ebos/eclgenericwriter.hh>
#include <dune/grid/common/mcmgmapper.hh>
#include <opm/grid/GridHelpers.hpp>
#include <opm/grid/utility/cartesianToCompressed.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/input/eclipse/Schedule/Action/State.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQConfig.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQState.hpp>
#include <opm/input/eclipse/Schedule/Well/WellMatcher.hpp>
#include <opm/input/eclipse/Units/UnitSystem.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/output/eclipse/RestartValue.hpp>
#include <opm/output/eclipse/Summary.hpp>
#if HAVE_MPI
#include <opm/simulators/utils/MPISerializer.hpp>
#endif
#if HAVE_MPI
#include <mpi.h>
#endif
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <functional>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
namespace {
/*!
* \brief Detect whether two cells are direct vertical neighbours.
*
* I.e. have the same i and j index and all cartesian cells between them
* along the vertical column are inactive.
*
* \tparam CM The type of the cartesian index mapper.
* \param cartMapper The mapper onto cartesian indices.
* \param cartesianToActive The mapping of cartesian indices to active indices.
* \param smallGlobalIndex The cartesian cell index of the cell with smaller index
* \param largeGlobalIndex The cartesian cell index of the cell with larger index
* \return True if the cells have the same i and j indices and all cartesian cells
* between them are inactive.
*/
bool directVerticalNeighbors(const std::array<int, 3>& cartDims,
const std::unordered_map<int,int>& cartesianToActive,
int smallGlobalIndex, int largeGlobalIndex)
{
assert(smallGlobalIndex <= largeGlobalIndex);
std::array<int, 3> ijk1, ijk2;
auto globalToIjk = [cartDims](int gc) {
std::array<int, 3> ijk;
ijk[0] = gc % cartDims[0];
gc /= cartDims[0];
ijk[1] = gc % cartDims[1];
ijk[2] = gc / cartDims[1];
return ijk;
};
ijk1 = globalToIjk(smallGlobalIndex);
ijk2 = globalToIjk(largeGlobalIndex);
assert(ijk2[2]>=ijk1[2]);
if ( ijk1[0] == ijk2[0] && ijk1[1] == ijk2[1] && (ijk2[2] - ijk1[2]) > 1)
{
assert((largeGlobalIndex-smallGlobalIndex)%(cartDims[0]*cartDims[1])==0);
for ( int gi = smallGlobalIndex + cartDims[0] * cartDims[1]; gi < largeGlobalIndex;
gi += cartDims[0] * cartDims[1] )
{
if ( cartesianToActive.find( gi ) != cartesianToActive.end() )
{
return false;
}
}
return true;
} else
return false;
}
std::unordered_map<std::string, Opm::data::InterRegFlowMap>
getInterRegFlowsAsMap(const Opm::InterRegFlowMap& map)
{
auto maps = std::unordered_map<std::string, Opm::data::InterRegFlowMap>{};
const auto& regionNames = map.names();
auto flows = map.getInterRegFlows();
const auto nmap = regionNames.size();
maps.reserve(nmap);
for (auto mapID = 0*nmap; mapID < nmap; ++mapID) {
maps.emplace(regionNames[mapID], std::move(flows[mapID]));
}
return maps;
}
struct EclWriteTasklet : public Opm::TaskletInterface
{
Opm::Action::State actionState_;
Opm::WellTestState wtestState_;
Opm::SummaryState summaryState_;
Opm::UDQState udqState_;
Opm::EclipseIO& eclIO_;
int reportStepNum_;
bool isSubStep_;
double secondsElapsed_;
Opm::RestartValue restartValue_;
bool writeDoublePrecision_;
explicit EclWriteTasklet(const Opm::Action::State& actionState,
const Opm::WellTestState& wtestState,
const Opm::SummaryState& summaryState,
const Opm::UDQState& udqState,
Opm::EclipseIO& eclIO,
int reportStepNum,
bool isSubStep,
double secondsElapsed,
Opm::RestartValue restartValue,
bool writeDoublePrecision)
: actionState_(actionState)
, wtestState_(wtestState)
, summaryState_(summaryState)
, udqState_(udqState)
, eclIO_(eclIO)
, reportStepNum_(reportStepNum)
, isSubStep_(isSubStep)
, secondsElapsed_(secondsElapsed)
, restartValue_(std::move(restartValue))
, writeDoublePrecision_(writeDoublePrecision)
{}
// callback to eclIO serial writeTimeStep method
void run()
{
this->eclIO_.writeTimeStep(this->actionState_,
this->wtestState_,
this->summaryState_,
this->udqState_,
this->reportStepNum_,
this->isSubStep_,
this->secondsElapsed_,
std::move(this->restartValue_),
this->writeDoublePrecision_);
}
};
}
namespace Opm {
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
EclGenericWriter(const Schedule& schedule,
const EclipseState& eclState,
const SummaryConfig& summaryConfig,
const Grid& grid,
const EquilGrid* equilGrid,
const GridView& gridView,
const Dune::CartesianIndexMapper<Grid>& cartMapper,
const Dune::CartesianIndexMapper<EquilGrid>* equilCartMapper,
bool enableAsyncOutput,
bool enableEsmry )
: collectToIORank_(grid,
equilGrid,
gridView,
cartMapper,
equilCartMapper,
summaryConfig.fip_regions_interreg_flow())
, grid_ (grid)
, gridView_ (gridView)
, schedule_ (schedule)
, eclState_ (eclState)
, summaryConfig_ (summaryConfig)
, cartMapper_ (cartMapper)
, equilCartMapper_(equilCartMapper)
, equilGrid_ (equilGrid)
{
if (this->collectToIORank_.isIORank()) {
this->eclIO_ = std::make_unique<EclipseIO>
(this->eclState_,
UgGridHelpers::createEclipseGrid(*equilGrid, eclState_.getInputGrid()),
this->schedule_, this->summaryConfig_, "", enableEsmry);
}
// create output thread if enabled and rank is I/O rank
// async output is enabled by default if pthread are enabled
int numWorkerThreads = 0;
if (enableAsyncOutput && collectToIORank_.isIORank()) {
numWorkerThreads = 1;
}
this->taskletRunner_.reset(new TaskletRunner(numWorkerThreads));
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
const EclipseIO& EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
eclIO() const
{
assert(eclIO_);
return *eclIO_;
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
writeInit(const std::function<unsigned int(unsigned int)>& map)
{
if (collectToIORank_.isIORank()) {
std::map<std::string, std::vector<int>> integerVectors;
if (collectToIORank_.isParallel()) {
integerVectors.emplace("MPI_RANK", collectToIORank_.globalRanks());
}
auto cartMap = cartesianToCompressed(equilGrid_->size(0), UgGridHelpers::globalCell(*equilGrid_));
eclIO_->writeInitial(computeTrans_(cartMap, map),
integerVectors,
exportNncStructure_(cartMap, map));
}
#if HAVE_MPI
if (collectToIORank_.isParallel()) {
const auto& comm = grid_.comm();
Opm::Parallel::MpiSerializer ser(comm);
ser.broadcast(outputNnc_);
}
#endif
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
data::Solution
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
computeTrans_(const std::unordered_map<int,int>& cartesianToActive,
const std::function<unsigned int(unsigned int)>& map) const
{
const auto& cartMapper = *equilCartMapper_;
const auto& cartDims = cartMapper.cartesianDimensions();
auto tranx = data::CellData {
UnitSystem::measure::transmissibility,
std::vector<double>(cartDims[0] * cartDims[1] * cartDims[2], 0.0),
data::TargetType::INIT
};
auto trany = tranx;
auto tranz = tranx;
using GlobalGridView = typename EquilGrid::LeafGridView;
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
const GlobalGridView& globalGridView = this->equilGrid_->leafGridView();
const GlobElementMapper globalElemMapper { globalGridView, Dune::mcmgElementLayout() };
auto isNumAquCell = [numAquCell = this->eclState_.aquifer().hasNumericalAquifer()
? this->eclState_.aquifer().numericalAquifers().allAquiferCellIds()
: std::vector<std::size_t>{}]
(const std::size_t cellIdx)
{
return std::binary_search(numAquCell.begin(), numAquCell.end(), cellIdx);
};
for (const auto& elem : elements(globalGridView)) {
for (const auto& is : intersections(globalGridView, elem)) {
if (!is.neighbor())
continue; // intersection is on the domain boundary
// Not 'const' because remapped if 'map' is non-null.
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
// Ordering of compressed and uncompressed index should be the same
const int cartIdx1 = cartMapper.cartesianIndex( c1 );
const int cartIdx2 = cartMapper.cartesianIndex( c2 );
if (isNumAquCell(cartIdx1) || isNumAquCell(cartIdx2)) {
// Connections involving numerical aquifers are always NNCs
// for the purpose of file output. This holds even for
// connections between cells like (I,J,K) and (I+1,J,K)
// which are nominally neighbours in the Cartesian grid.
continue;
}
// Ordering of compressed and uncompressed index should be the same
assert(cartIdx1 <= cartIdx2);
int gc1 = std::min(cartIdx1, cartIdx2);
int gc2 = std::max(cartIdx1, cartIdx2);
// Re-ordering in case of non-empty mapping between equilGrid to grid
if (map) {
c1 = map(c1); // equilGridToGrid map
c2 = map(c2);
}
if (gc2 - gc1 == 1 && cartDims[0] > 1 ) {
tranx.data<double>()[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skip other if clauses as they are false, last one needs some computation
}
if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) {
trany.data<double>()[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skipt next if clause as it needs some computation
}
if ( gc2 - gc1 == cartDims[0]*cartDims[1] ||
directVerticalNeighbors(cartDims, cartesianToActive, gc1, gc2))
tranz.data<double>()[gc1] = globalTrans().transmissibility(c1, c2);
}
}
return {
{"TRANX", tranx},
{"TRANY", trany},
{"TRANZ", tranz},
};
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
std::vector<NNCdata>
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
exportNncStructure_(const std::unordered_map<int,int>& cartesianToActive,
const std::function<unsigned int(unsigned int)>& map) const
{
auto isNumAquCell = [numAquCell = this->eclState_.aquifer().hasNumericalAquifer()
? this->eclState_.aquifer().numericalAquifers().allAquiferCellIds()
: std::vector<std::size_t>{}]
(const std::size_t cellIdx)
{
return std::binary_search(numAquCell.begin(), numAquCell.end(), cellIdx);
};
auto isNumAquConn = [&isNumAquCell](const std::size_t cellIdx1,
const std::size_t cellIdx2)
{
return isNumAquCell(cellIdx1) || isNumAquCell(cellIdx2);
};
auto isCartesianNeighbour = [nx = this->eclState_.getInputGrid().getNX(),
ny = this->eclState_.getInputGrid().getNY()]
(const std::size_t cellIdx1, const std::size_t cellIdx2)
{
const auto cellDiff = cellIdx2 - cellIdx1;
return (cellDiff == 1)
|| (cellDiff == nx)
|| (cellDiff == nx * ny);
};
auto activeCell = [&cartesianToActive](const std::size_t cellIdx)
{
auto pos = cartesianToActive.find(cellIdx);
return (pos == cartesianToActive.end()) ? -1 : pos->second;
};
const auto& nncData = this->eclState_.getInputNNC().input();
const auto& unitSystem = this->eclState_.getDeckUnitSystem();
for (const auto& entry : nncData) {
// Ignore most explicit NNCs between otherwise neighbouring cells.
// We keep NNCs that involve cells with numerical aquifers even if
// these might be between neighbouring cells in the Cartesian
// grid--e.g., between cells (I,J,K) and (I+1,J,K). All such
// connections should be written to NNC output arrays provided the
// transmissibility value is sufficiently large.
//
// The condition cell2 >= cell1 holds by construction of nncData.
assert (entry.cell2 >= entry.cell1);
if (! isCartesianNeighbour(entry.cell1, entry.cell2) ||
isNumAquConn(entry.cell1, entry.cell2))
{
// Pick up transmissibility value from 'globalTrans()' since
// multiplier keywords like MULTREGT might have impacted the
// values entered in primary sources like NNC/EDITNNC/EDITNNCR.
const auto c1 = activeCell(entry.cell1);
const auto c2 = activeCell(entry.cell2);
if ((c1 < 0) || (c2 < 0)) {
// Connection between inactive cells? Unexpected at this
// level. Might consider 'throw'ing if this happens...
continue;
}
const auto trans = this->globalTrans().transmissibility(c1, c2);
const auto tt = unitSystem
.from_si(UnitSystem::measure::transmissibility, trans);
// ECLIPSE ignores NNCs (with EDITNNC/EDITNNCR applied) with
// small transmissibility values. Seems like the threshold is
// 1.0e-6 in output units.
if (std::isnormal(tt) && ! (tt < 1.0e-6)) {
this->outputNnc_.emplace_back(entry.cell1, entry.cell2, trans);
}
}
}
auto isDirectNeighbours = [&isCartesianNeighbour, &cartesianToActive,
cartDims = &this->cartMapper_.cartesianDimensions()]
(const std::size_t cellIdx1, const std::size_t cellIdx2)
{
return isCartesianNeighbour(cellIdx1, cellIdx2)
|| directVerticalNeighbors(*cartDims, cartesianToActive, cellIdx1, cellIdx2);
};
using GlobalGridView = typename EquilGrid::LeafGridView;
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
const GlobalGridView& globalGridView = this->equilGrid_->leafGridView();
const GlobElementMapper globalElemMapper { globalGridView, Dune::mcmgElementLayout() };
// Cartesian index mapper for the serial I/O grid
const auto& equilCartMapper = *equilCartMapper_;
for (const auto& elem : elements(globalGridView)) {
for (const auto& is : intersections(globalGridView, elem)) {
if (!is.neighbor())
continue; // intersection is on the domain boundary
// Not 'const' because remapped if 'map' is non-null.
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
std::size_t cc1 = equilCartMapper.cartesianIndex( c1 );
std::size_t cc2 = equilCartMapper.cartesianIndex( c2 );
if ( cc2 < cc1 )
std::swap(cc1, cc2);
// Re-ordering in case of non-empty mapping between equilGrid to grid
if (map) {
c1 = map(c1); // equilGridToGrid map
c2 = map(c2);
}
if (isNumAquConn(cc1, cc2) || ! isDirectNeighbours(cc1, cc2)) {
// We need to check whether an NNC for this face was also
// specified via the NNC keyword in the deck.
auto t = this->globalTrans().transmissibility(c1, c2);
auto candidate = std::lower_bound(nncData.begin(), nncData.end(),
NNCdata { cc1, cc2, 0.0 });
while ((candidate != nncData.end()) &&
(candidate->cell1 == cc1) &&
(candidate->cell2 == cc2))
{
t -= candidate->trans;
++candidate;
}
// ECLIPSE ignores NNCs with zero transmissibility
// (different threshold than for NNC with corresponding
// EDITNNC above). In addition we do set small
// transmissibilities to zero when setting up the simulator.
// These will be ignored here, too.
const auto tt = unitSystem
.from_si(UnitSystem::measure::transmissibility, t);
if (std::isnormal(tt) && (tt > 1.0e-12)) {
this->outputNnc_.emplace_back(cc1, cc2, t);
}
}
}
}
return this->outputNnc_;
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
doWriteOutput(const int reportStepNum,
const bool isSubStep,
data::Solution&& localCellData,
data::Wells&& localWellData,
data::GroupAndNetworkValues&& localGroupAndNetworkData,
data::Aquifers&& localAquiferData,
WellTestState&& localWTestState,
const Action::State& actionState,
const UDQState& udqState,
const SummaryState& summaryState,
const std::vector<Scalar>& thresholdPressure,
Scalar curTime,
Scalar nextStepSize,
bool doublePrecision,
bool isFlowsn,
std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>&& flowsn,
bool isFloresn,
std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>&& floresn)
{
const auto isParallel = this->collectToIORank_.isParallel();
const bool needsReordering = this->collectToIORank_.doesNeedReordering();
RestartValue restartValue {
(isParallel || needsReordering)
? this->collectToIORank_.globalCellData()
: std::move(localCellData),
isParallel ? this->collectToIORank_.globalWellData()
: std::move(localWellData),
isParallel ? this->collectToIORank_.globalGroupAndNetworkData()
: std::move(localGroupAndNetworkData),
isParallel ? this->collectToIORank_.globalAquiferData()
: std::move(localAquiferData)
};
if (eclState_.getSimulationConfig().useThresholdPressure()) {
restartValue.addExtra("THRESHPR", UnitSystem::measure::pressure,
thresholdPressure);
}
// Add suggested next timestep to extra data.
if (! isSubStep) {
restartValue.addExtra("OPMEXTRA", std::vector<double>(1, nextStepSize));
}
// Add nnc flows and flores.
if (isFlowsn) {
const auto flowsn_global = isParallel ? this->collectToIORank_.globalFlowsn() : std::move(flowsn);
for (const auto& flows : flowsn_global) {
if (flows.first.empty())
continue;
if (flows.first == "FLOGASN+") {
restartValue.addExtra(flows.first, UnitSystem::measure::gas_surface_rate, flows.second.second);
}
else {
restartValue.addExtra(flows.first, UnitSystem::measure::liquid_surface_rate, flows.second.second);
}
}
}
if (isFloresn) {
const auto floresn_global = isParallel ? this->collectToIORank_.globalFloresn() : std::move(floresn);
for (const auto& flores : floresn_global) {
if (flores.first.empty())
continue;
restartValue.addExtra(flores.first, UnitSystem::measure::rate, flores.second.second);
}
}
// first, create a tasklet to write the data for the current time
// step to disk
auto eclWriteTasklet = std::make_shared<EclWriteTasklet>(
actionState,
isParallel ? this->collectToIORank_.globalWellTestState() : std::move(localWTestState),
summaryState, udqState, *this->eclIO_,
reportStepNum, isSubStep, curTime, std::move(restartValue), doublePrecision);
// then, make sure that the previous I/O request has been completed
// and the number of incomplete tasklets does not increase between
// time steps
this->taskletRunner_->barrier();
// finally, start a new output writing job
this->taskletRunner_->dispatch(std::move(eclWriteTasklet));
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
evalSummary(const int reportStepNum,
const Scalar curTime,
const data::Wells& localWellData,
const data::WellBlockAveragePressures& localWBPData,
const data::GroupAndNetworkValues& localGroupAndNetworkData,
const std::map<int,data::AquiferData>& localAquiferData,
const std::map<std::pair<std::string, int>, double>& blockData,
const std::map<std::string, double>& miscSummaryData,
const std::map<std::string, std::vector<double>>& regionData,
const Inplace& inplace,
const Inplace& initialInPlace,
const InterRegFlowMap& interRegFlows,
SummaryState& summaryState,
UDQState& udqState)
{
if (collectToIORank_.isIORank()) {
const auto& summary = eclIO_->summary();
const auto& wellData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalWellData()
: localWellData;
const auto& wbpData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalWBPData()
: localWBPData;
const auto& groupAndNetworkData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalGroupAndNetworkData()
: localGroupAndNetworkData;
const auto& aquiferData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalAquiferData()
: localAquiferData;
summary.eval(summaryState,
reportStepNum,
curTime,
wellData,
wbpData,
groupAndNetworkData,
miscSummaryData,
initialInPlace,
inplace,
regionData,
blockData,
aquiferData,
getInterRegFlowsAsMap(interRegFlows));
// Off-by-one-fun: The reportStepNum argument corresponds to the
// report step these results will be written to, whereas the
// argument to UDQ function evaluation corresponds to the report
// step we are currently on.
const auto udq_step = reportStepNum - 1;
this->schedule_.getUDQConfig(udq_step)
.eval(udq_step,
this->schedule_,
this->schedule_.wellMatcher(udq_step),
this->schedule_.segmentMatcherFactory(udq_step),
summaryState,
udqState);
}
#if HAVE_MPI
if (collectToIORank_.isParallel()) {
Parallel::MpiSerializer ser(grid_.comm());
ser.append(summaryState);
}
#endif
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
const typename EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::TransmissibilityType&
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
globalTrans() const
{
assert (globalTrans_);
return *globalTrans_;
}
} // namespace Opm
#endif