opm-simulators/opm/models/flash/flashmodel.hh
2019-09-19 10:59:55 +02:00

319 lines
11 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FlashModel
*/
#ifndef EWOMS_FLASH_MODEL_HH
#define EWOMS_FLASH_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "flashproperties.hh"
#include "flashprimaryvariables.hh"
#include "flashlocalresidual.hh"
#include "flashratevector.hh"
#include "flashboundaryratevector.hh"
#include "flashintensivequantities.hh"
#include "flashextensivequantities.hh"
#include "flashindices.hh"
#include <opm/models/common/multiphasebasemodel.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkenergymodule.hh>
#include <opm/models/io/vtkdiffusionmodule.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class FlashModel;
}
BEGIN_PROPERTIES
//! The type tag for the isothermal single phase problems
NEW_TYPE_TAG(FlashModel, INHERITS_FROM(MultiPhaseBaseModel,
VtkComposition,
VtkEnergy,
VtkDiffusion));
//! Use the FlashLocalResidual function for the flash model
SET_TYPE_PROP(FlashModel, LocalResidual,
Opm::FlashLocalResidual<TypeTag>);
//! Use the NCP flash solver by default
SET_TYPE_PROP(FlashModel, FlashSolver,
Opm::NcpFlash<typename GET_PROP_TYPE(TypeTag, Scalar),
typename GET_PROP_TYPE(TypeTag, FluidSystem)>);
//! Let the flash solver choose its tolerance by default
SET_SCALAR_PROP(FlashModel, FlashTolerance, -1.0);
//! the Model property
SET_TYPE_PROP(FlashModel, Model, Opm::FlashModel<TypeTag>);
//! the PrimaryVariables property
SET_TYPE_PROP(FlashModel, PrimaryVariables, Opm::FlashPrimaryVariables<TypeTag>);
//! the RateVector property
SET_TYPE_PROP(FlashModel, RateVector, Opm::FlashRateVector<TypeTag>);
//! the BoundaryRateVector property
SET_TYPE_PROP(FlashModel, BoundaryRateVector, Opm::FlashBoundaryRateVector<TypeTag>);
//! the IntensiveQuantities property
SET_TYPE_PROP(FlashModel, IntensiveQuantities, Opm::FlashIntensiveQuantities<TypeTag>);
//! the ExtensiveQuantities property
SET_TYPE_PROP(FlashModel, ExtensiveQuantities, Opm::FlashExtensiveQuantities<TypeTag>);
//! The indices required by the flash-baseed isothermal compositional model
SET_TYPE_PROP(FlashModel, Indices, Opm::FlashIndices<TypeTag, /*PVIdx=*/0>);
// The updates of intensive quantities tend to be _very_ expensive for this
// model, so let's try to minimize the number of required ones
SET_BOOL_PROP(FlashModel, EnableIntensiveQuantityCache, true);
// since thermodynamic hints are basically free if the cache for intensive quantities is
// enabled, and this model usually shows quite a performance improvment if they are
// enabled, let's enable them by default.
SET_BOOL_PROP(FlashModel, EnableThermodynamicHints, true);
// disable molecular diffusion by default
SET_BOOL_PROP(FlashModel, EnableDiffusion, false);
//! Disable the energy equation by default
SET_BOOL_PROP(FlashModel, EnableEnergy, false);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup FlashModel
*
* \brief A compositional multi-phase model based on flash-calculations
*
* This model assumes a flow of \f$M \geq 1\f$ fluid phases
* \f$\alpha\f$, each of which is assumed to be a mixture \f$N \geq
* M\f$ chemical species (denoted by the upper index \f$\kappa\f$).
*
* By default, the standard multi-phase Darcy approach is used to determine
* the velocity, i.e.
* \f[
* \mathbf{v}_\alpha =
* - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
* \left(\mathbf{grad}\, p_\alpha
* - \varrho_{\alpha} \mathbf{g} \right) \;,
* \f]
* although the actual approach which is used can be specified via the
* \c FluxModule property. For example, the velocity model can by
* changed to the Forchheimer approach by
* \code
* SET_TYPE_PROP(MyProblemTypeTag, FluxModule, Opm::ForchheimerFluxModule<TypeTag>);
* \endcode
*
* The core of the model is the conservation mass of each component by
* means of the equation
* \f[
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
* - q^\kappa = 0 \;.
* \f]
*
* To determine the quanties that occur in the equations above, this
* model uses <i>flash calculations</i>. A flash solver starts with
* the total mass or molar mass per volume for each component and,
* calculates the compositions, saturations and pressures of all
* phases at a given temperature. For this the flash solver has to use
* some model assumptions internally. (Often these are the same
* primary variable switching or NCP assumptions as used by the other
* fully implicit compositional multi-phase models provided by eWoms.)
*
* Using flash calculations for the flow model has some disadvantages:
* - The accuracy of the flash solver needs to be sufficient to
* calculate the parital derivatives using numerical differentiation
* which are required for the Newton scheme.
* - Flash calculations tend to be quite computationally expensive and
* are often numerically unstable.
*
* It is thus adviced to increase the target tolerance of the Newton
* scheme or a to use type for scalar values which exhibits higher
* precision than the standard \c double (e.g. \c quad) if this model
* ought to be used.
*
* The model uses the following primary variables:
* - The total molar concentration of each component:
* \f$c^\kappa = \sum_\alpha S_\alpha x_\alpha^\kappa \rho_{mol, \alpha}\f$
* - The absolute temperature $T$ in Kelvins if the energy equation enabled.
*/
template <class TypeTag>
class FlashModel
: public MultiPhaseBaseModel<TypeTag>
{
typedef MultiPhaseBaseModel<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableDiffusion = GET_PROP_VALUE(TypeTag, EnableDiffusion) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
public:
FlashModel(Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkCompositionModule<TypeTag>::registerParameters();
if (enableDiffusion)
Opm::VtkDiffusionModule<TypeTag>::registerParameters();
if (enableEnergy)
Opm::VtkEnergyModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FlashTolerance,
"The maximum tolerance for the flash solver to "
"consider the solution converged");
}
/*!
* \copydoc FvBaseDiscretization::name
*/
static std::string name()
{ return "flash"; }
/*!
* \copydoc FvBaseDiscretization::primaryVarName
*/
std::string primaryVarName(unsigned pvIdx) const
{
const std::string& tmp = EnergyModule::primaryVarName(pvIdx);
if (tmp != "")
return tmp;
std::ostringstream oss;
if (Indices::cTot0Idx <= pvIdx && pvIdx < Indices::cTot0Idx
+ numComponents)
oss << "c_tot," << FluidSystem::componentName(/*compIdx=*/pvIdx
- Indices::cTot0Idx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::eqName
*/
std::string eqName(unsigned eqIdx) const
{
const std::string& tmp = EnergyModule::eqName(eqIdx);
if (tmp != "")
return tmp;
std::ostringstream oss;
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx
+ numComponents) {
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
oss << "continuity^" << FluidSystem::componentName(compIdx);
}
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::primaryVarWeight
*/
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
{
Scalar tmp = EnergyModule::primaryVarWeight(*this, globalDofIdx, pvIdx);
if (tmp > 0)
return tmp;
unsigned compIdx = pvIdx - Indices::cTot0Idx;
// make all kg equal. also, divide the weight of all total
// compositions by 100 to make the relative errors more
// comparable to the ones of the other models (at 10% porosity
// the medium is fully saturated with water at atmospheric
// conditions if 100 kg/m^3 are present!)
return FluidSystem::molarMass(compIdx) / 100.0;
}
/*!
* \copydoc FvBaseDiscretization::eqWeight
*/
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
{
Scalar tmp = EnergyModule::eqWeight(*this, globalDofIdx, eqIdx);
if (tmp > 0)
return tmp;
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
// make all kg equal
return FluidSystem::molarMass(compIdx);
}
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which are meaningful for the model
this->addOutputModule(new Opm::VtkCompositionModule<TypeTag>(this->simulator_));
if (enableDiffusion)
this->addOutputModule(new Opm::VtkDiffusionModule<TypeTag>(this->simulator_));
if (enableEnergy)
this->addOutputModule(new Opm::VtkEnergyModule<TypeTag>(this->simulator_));
}
};
} // namespace Opm
#endif