opm-simulators/opm/simulators/wells/StandardWellAssemble.cpp
2023-03-29 14:40:50 +02:00

287 lines
12 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellAssemble.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/wells/StandardWellEquations.hpp>
#include <opm/simulators/wells/StandardWellPrimaryVariables.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
#include <opm/simulators/wells/WellState.hpp>
namespace Opm {
//! \brief Class administering assembler access to equation system.
template<class Scalar, int numEq>
class StandardWellEquationAccess {
public:
//! \brief Constructor initializes reference to the equation system.
StandardWellEquationAccess(StandardWellEquations<Scalar,numEq>& eqns)
: eqns_(eqns)
{}
using BVectorWell = typename StandardWellEquations<Scalar,numEq>::BVectorWell;
using DiagMatWell = typename StandardWellEquations<Scalar,numEq>::DiagMatWell;
using OffDiatMatWell = typename StandardWellEquations<Scalar,numEq>::OffDiagMatWell;
//! \brief Returns a reference to residual vector.
BVectorWell& residual()
{
return eqns_.resWell_;
}
//! \brief Returns a reference to B matrix.
OffDiatMatWell& B()
{
return eqns_.duneB_;
}
//! \brief Returns a reference to C matrix.
OffDiatMatWell& C()
{
return eqns_.duneC_;
}
//! \brief Returns a reference to D matrix.
DiagMatWell& D()
{
return eqns_.duneD_;
}
private:
StandardWellEquations<Scalar,numEq>& eqns_; //!< Reference to equation system
};
template<class FluidSystem, class Indices, class Scalar>
void
StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const PrimaryVariables& primary_variables,
const double rho,
StandardWellEquations<Scalar,Indices::numEq>& eqns1,
DeferredLogger& deferred_logger) const
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
EvalWell control_eq(primary_variables.numWellEq() + Indices::numEq, 0.0);
const auto& well = well_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, EvalWell(primary_variables.numWellEq() + Indices::numEq, 0.0));
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (well_.stopppedOrZeroRateTarget(summaryState, well_state)) {
control_eq = primary_variables.eval(PrimaryVariables::WQTotal);
} else if (well_.isInjector()) {
// Find injection rate.
const EvalWell injection_rate = primary_variables.eval(PrimaryVariables::WQTotal);
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
WellAssemble(well_).
assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
primary_variables.eval(PrimaryVariables::Bhp),
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
WellAssemble(well_).
assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
primary_variables.eval(PrimaryVariables::Bhp),
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
StandardWellEquationAccess eqns(eqns1);
eqns.residual()[0][PrimaryVariables::Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < primary_variables.numWellEq(); ++pv_idx) {
eqns.D()[0][0][PrimaryVariables::Bhp][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleInjectivityEq(const EvalWell& eq_pskin,
const EvalWell& eq_wat_vel,
const int pskin_index,
const int wat_vel_index,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
eqns.residual()[0][pskin_index] = eq_pskin.value();
eqns.residual()[0][wat_vel_index] = eq_wat_vel.value();
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
eqns.D()[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+Indices::numEq);
eqns.D()[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+Indices::numEq);
}
// the water velocity is impacted by the reservoir primary varaibles. It needs to enter matrix B
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
eqns.B()[0][cell_idx][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx);
}
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assemblePerforationEq(const EvalWell& cq_s_effective,
const int componentIdx,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
// subtract sum of phase fluxes in the well equations.
eqns.residual()[0][componentIdx] += cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
// also need to consider the efficiency factor when manipulating the jacobians.
eqns.C()[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+Indices::numEq); // intput in transformed matrix
eqns.D()[0][0][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx+Indices::numEq);
}
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
eqns.B()[0][cell_idx][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx);
}
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleSourceEq(const EvalWell& resWell_loc,
const int componentIdx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
eqns.D()[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+Indices::numEq);
}
eqns.residual()[0][componentIdx] += resWell_loc.value();
}
template<class FluidSystem, class Indices, class Scalar>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleZFracEq(const EvalWell& cq_s_zfrac_effective,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
eqns.C()[0][cell_idx][pvIdx][Indices::contiZfracEqIdx] -= cq_s_zfrac_effective.derivative(pvIdx+Indices::numEq);
}
}
#define INSTANCE(Dim,...) \
template class StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
// One phase
INSTANCE(4u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(5u, BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(9u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(8u, BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
// Blackoil
INSTANCE(8u, BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(10u, BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
}