mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-12 17:31:55 -06:00
662 lines
21 KiB
C++
662 lines
21 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/VFPHelpers.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include <opm/input/eclipse/Schedule/VFPInjTable.hpp>
|
|
#include <opm/input/eclipse/Schedule/VFPProdTable.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <stdexcept>
|
|
|
|
namespace {
|
|
|
|
/**
|
|
* Helper function that finds x for a given value of y for a line
|
|
* *NOTE ORDER OF ARGUMENTS*
|
|
*/
|
|
double findX(const double x0,
|
|
const double x1,
|
|
const double y0,
|
|
const double y1,
|
|
const double y)
|
|
{
|
|
const double dx = x1 - x0;
|
|
const double dy = y1 - y0;
|
|
|
|
/**
|
|
* y = y0 + (dy / dx) * (x - x0)
|
|
* => x = x0 + (y - y0) * (dx / dy)
|
|
*
|
|
* If dy is zero, use x1 as the value.
|
|
*/
|
|
|
|
double x = 0.0;
|
|
|
|
if (dy != 0.0) {
|
|
x = x0 + (y-y0) * (dx/dy);
|
|
}
|
|
else {
|
|
x = x1;
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
* Returns zero if input value is negative
|
|
*/
|
|
template <typename T>
|
|
static T chopNegativeValues(const T& value) {
|
|
return Opm::max(0.0, value);
|
|
}
|
|
|
|
}
|
|
|
|
namespace Opm {
|
|
namespace detail {
|
|
|
|
InterpData findInterpData(const double value_in, const std::vector<double>& values)
|
|
{
|
|
InterpData retval;
|
|
|
|
const int nvalues = values.size();
|
|
|
|
// chopping the value to be zero, which means we do not
|
|
// extrapolate the table towards nagative ranges
|
|
const double value = value_in < 0.? 0. : value_in;
|
|
|
|
//If we only have one value in our vector, return that
|
|
if (values.size() == 1) {
|
|
retval.ind_[0] = 0;
|
|
retval.ind_[1] = 0;
|
|
retval.inv_dist_ = 0.0;
|
|
retval.factor_ = 0.0;
|
|
}
|
|
// Else search in the vector
|
|
else {
|
|
//If value is less than all values, use first interval
|
|
if (value < values.front()) {
|
|
retval.ind_[0] = 0;
|
|
retval.ind_[1] = 1;
|
|
}
|
|
//If value is greater than all values, use last interval
|
|
else if (value >= values.back()) {
|
|
retval.ind_[0] = nvalues-2;
|
|
retval.ind_[1] = nvalues-1;
|
|
}
|
|
else {
|
|
//Search internal intervals
|
|
for (int i=1; i<nvalues; ++i) {
|
|
if (values[i] >= value) {
|
|
retval.ind_[0] = i-1;
|
|
retval.ind_[1] = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const double start = values[retval.ind_[0]];
|
|
const double end = values[retval.ind_[1]];
|
|
|
|
//Find interpolation ratio
|
|
if (end > start) {
|
|
//FIXME: Possible source for floating point error here if value and floor are large,
|
|
//but very close to each other
|
|
retval.inv_dist_ = 1.0 / (end-start);
|
|
retval.factor_ = (value-start) * retval.inv_dist_;
|
|
}
|
|
else {
|
|
retval.inv_dist_ = 0.0;
|
|
retval.factor_ = 0.0;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
VFPEvaluation operator+(VFPEvaluation lhs, const VFPEvaluation& rhs)
|
|
{
|
|
lhs.value += rhs.value;
|
|
lhs.dthp += rhs.dthp;
|
|
lhs.dwfr += rhs.dwfr;
|
|
lhs.dgfr += rhs.dgfr;
|
|
lhs.dalq += rhs.dalq;
|
|
lhs.dflo += rhs.dflo;
|
|
return lhs;
|
|
}
|
|
|
|
VFPEvaluation operator-(VFPEvaluation lhs, const VFPEvaluation& rhs)
|
|
{
|
|
lhs.value -= rhs.value;
|
|
lhs.dthp -= rhs.dthp;
|
|
lhs.dwfr -= rhs.dwfr;
|
|
lhs.dgfr -= rhs.dgfr;
|
|
lhs.dalq -= rhs.dalq;
|
|
lhs.dflo -= rhs.dflo;
|
|
return lhs;
|
|
}
|
|
|
|
VFPEvaluation operator*(double lhs, const VFPEvaluation& rhs)
|
|
{
|
|
VFPEvaluation retval;
|
|
retval.value = rhs.value * lhs;
|
|
retval.dthp = rhs.dthp * lhs;
|
|
retval.dwfr = rhs.dwfr * lhs;
|
|
retval.dgfr = rhs.dgfr * lhs;
|
|
retval.dalq = rhs.dalq * lhs;
|
|
retval.dflo = rhs.dflo * lhs;
|
|
return retval;
|
|
}
|
|
|
|
VFPEvaluation interpolate(const VFPProdTable& table,
|
|
const InterpData& flo_i,
|
|
const InterpData& thp_i,
|
|
const InterpData& wfr_i,
|
|
const InterpData& gfr_i,
|
|
const InterpData& alq_i)
|
|
{
|
|
//Values and derivatives in a 5D hypercube
|
|
VFPEvaluation nn[2][2][2][2][2];
|
|
|
|
|
|
//Pick out nearest neighbors (nn) to our evaluation point
|
|
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
|
//we copy to (nn) will fit better in cache than the full original table for the
|
|
//interpolation below.
|
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
for (int f=0; f<=1; ++f) {
|
|
//Shorthands for indexing
|
|
const int ti = thp_i.ind_[t];
|
|
const int wi = wfr_i.ind_[w];
|
|
const int gi = gfr_i.ind_[g];
|
|
const int ai = alq_i.ind_[a];
|
|
const int fi = flo_i.ind_[f];
|
|
|
|
//Copy element
|
|
nn[t][w][g][a][f].value = table(ti,wi,gi,ai,fi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Calculate derivatives
|
|
//Note that the derivative of the two end points of a line aligned with the
|
|
//"axis of the derivative" are equal
|
|
for (int i=0; i<=1; ++i) {
|
|
for (int j=0; j<=1; ++j) {
|
|
for (int k=0; k<=1; ++k) {
|
|
for (int l=0; l<=1; ++l) {
|
|
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
|
|
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
|
|
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
|
|
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
|
|
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
|
|
|
|
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
|
|
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
|
|
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
|
|
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
|
|
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
|
|
|
|
// Remove dimensions one by one
|
|
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
|
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
|
// axis, leaving a 1D, problem, etc.
|
|
t2 = flo_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
t2 = alq_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
t2 = gfr_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
|
|
}
|
|
}
|
|
|
|
t2 = wfr_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
|
|
}
|
|
|
|
t2 = thp_i.factor_;
|
|
t1 = (1.0-t2);
|
|
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
|
|
|
|
return nn[0][0][0][0][0];
|
|
}
|
|
|
|
VFPEvaluation interpolate(const VFPInjTable& table,
|
|
const InterpData& flo_i,
|
|
const InterpData& thp_i)
|
|
{
|
|
//Values and derivatives in a 2D plane
|
|
VFPEvaluation nn[2][2];
|
|
|
|
|
|
//Pick out nearest neighbors (nn) to our evaluation point
|
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int f=0; f<=1; ++f) {
|
|
//Shorthands for indexing
|
|
const int ti = thp_i.ind_[t];
|
|
const int fi = flo_i.ind_[f];
|
|
|
|
//Copy element
|
|
nn[t][f].value = table(ti,fi);
|
|
}
|
|
}
|
|
|
|
//Calculate derivatives
|
|
//Note that the derivative of the two end points of a line aligned with the
|
|
//"axis of the derivative" are equal
|
|
for (int i=0; i<=1; ++i) {
|
|
nn[0][i].dthp = (nn[1][i].value - nn[0][i].value) * thp_i.inv_dist_;
|
|
nn[i][0].dwfr = -1e100;
|
|
nn[i][0].dgfr = -1e100;
|
|
nn[i][0].dalq = -1e100;
|
|
nn[i][0].dflo = (nn[i][1].value - nn[i][0].value) * flo_i.inv_dist_;
|
|
|
|
nn[1][i].dthp = nn[0][i].dthp;
|
|
nn[i][1].dwfr = nn[i][0].dwfr;
|
|
nn[i][1].dgfr = nn[i][0].dgfr;
|
|
nn[i][1].dalq = nn[i][0].dalq;
|
|
nn[i][1].dflo = nn[i][0].dflo;
|
|
}
|
|
|
|
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
|
|
|
|
// Go from 2D to 1D
|
|
t2 = flo_i.factor_;
|
|
t1 = (1.0-t2);
|
|
nn[0][0] = t1*nn[0][0] + t2*nn[0][1];
|
|
nn[1][0] = t1*nn[1][0] + t2*nn[1][1];
|
|
|
|
// Go from line to point on line
|
|
t2 = thp_i.factor_;
|
|
t1 = (1.0-t2);
|
|
nn[0][0] = t1*nn[0][0] + t2*nn[1][0];
|
|
|
|
return nn[0][0];
|
|
}
|
|
|
|
VFPEvaluation bhp(const VFPProdTable& table,
|
|
const double aqua,
|
|
const double liquid,
|
|
const double vapour,
|
|
const double thp,
|
|
const double alq,
|
|
const double explicit_wfr,
|
|
const double explicit_gfr,
|
|
const bool use_vfpexplicit)
|
|
{
|
|
//Find interpolation variables
|
|
double flo = detail::getFlo(table, aqua, liquid, vapour);
|
|
double wfr = detail::getWFR(table, aqua, liquid, vapour);
|
|
double gfr = detail::getGFR(table, aqua, liquid, vapour);
|
|
if (use_vfpexplicit) {
|
|
wfr = explicit_wfr;
|
|
gfr = explicit_gfr;
|
|
}
|
|
|
|
//First, find the values to interpolate between
|
|
//Recall that flo is negative in Opm, so switch sign.
|
|
auto flo_i = detail::findInterpData(-flo, table.getFloAxis());
|
|
auto thp_i = detail::findInterpData( thp, table.getTHPAxis());
|
|
auto wfr_i = detail::findInterpData( wfr, table.getWFRAxis());
|
|
auto gfr_i = detail::findInterpData( gfr, table.getGFRAxis());
|
|
auto alq_i = detail::findInterpData( alq, table.getALQAxis());
|
|
|
|
detail::VFPEvaluation retval = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
|
|
return retval;
|
|
}
|
|
|
|
VFPEvaluation bhp(const VFPInjTable& table,
|
|
const double aqua,
|
|
const double liquid,
|
|
const double vapour,
|
|
const double thp)
|
|
{
|
|
//Find interpolation variables
|
|
double flo = detail::getFlo(table, aqua, liquid, vapour);
|
|
|
|
//First, find the values to interpolate between
|
|
auto flo_i = detail::findInterpData(flo, table.getFloAxis());
|
|
auto thp_i = detail::findInterpData(thp, table.getTHPAxis());
|
|
|
|
//Then perform the interpolation itself
|
|
detail::VFPEvaluation retval = detail::interpolate(table, flo_i, thp_i);
|
|
|
|
return retval;
|
|
}
|
|
|
|
double findTHP(const std::vector<double>& bhp_array,
|
|
const std::vector<double>& thp_array,
|
|
double bhp)
|
|
{
|
|
int nthp = thp_array.size();
|
|
|
|
double thp = -1e100;
|
|
|
|
//Check that our thp axis is sorted
|
|
assert(std::is_sorted(thp_array.begin(), thp_array.end()));
|
|
|
|
/**
|
|
* Our *interpolated* bhp_array will be montonic increasing for increasing
|
|
* THP if our input BHP values are monotonic increasing for increasing
|
|
* THP values. However, if we have to *extrapolate* along any of the other
|
|
* axes, this guarantee holds no more, and bhp_array may be "random"
|
|
*/
|
|
if (std::is_sorted(bhp_array.begin(), bhp_array.end())) {
|
|
//Target bhp less than all values in array, extrapolate
|
|
if (bhp <= bhp_array[0]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[0];
|
|
const double& x1 = thp_array[1];
|
|
const double& y0 = bhp_array[0];
|
|
const double& y1 = bhp_array[1];
|
|
thp = findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
//Target bhp greater than all values in array, extrapolate
|
|
else if (bhp > bhp_array[nthp-1]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[nthp-2];
|
|
const double& x1 = thp_array[nthp-1];
|
|
const double& y0 = bhp_array[nthp-2];
|
|
const double& y1 = bhp_array[nthp-1];
|
|
thp = findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
//Target bhp within table ranges, interpolate
|
|
else {
|
|
//Loop over the values and find min(bhp_array(thp)) == bhp
|
|
//so that we maximize the rate.
|
|
|
|
//Find i so that bhp_array[i-1] <= bhp <= bhp_array[i];
|
|
//Assuming a small number of values in bhp_array, this should be quite
|
|
//efficient. Other strategies might be bisection, etc.
|
|
int i=0;
|
|
bool found = false;
|
|
for (; i<nthp-1; ++i) {
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
|
|
if (y0 < bhp && bhp <= y1) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
//Canary in a coal mine: shouldn't really be required
|
|
assert(found == true);
|
|
static_cast<void>(found); //Silence compiler warning
|
|
|
|
const double& x0 = thp_array[i ];
|
|
const double& x1 = thp_array[i+1];
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
thp = findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
}
|
|
//bhp_array not sorted, raw search.
|
|
else {
|
|
//Find i so that bhp_array[i-1] <= bhp <= bhp_array[i];
|
|
//Since the BHP values might not be sorted, first search within
|
|
//our interpolation values, and then try to extrapolate.
|
|
int i=0;
|
|
bool found = false;
|
|
for (; i<nthp-1; ++i) {
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
|
|
if (y0 < bhp && bhp <= y1) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
const double& x0 = thp_array[i ];
|
|
const double& x1 = thp_array[i+1];
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
thp = findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
else if (bhp <= bhp_array[0]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[0];
|
|
const double& x1 = thp_array[1];
|
|
const double& y0 = bhp_array[0];
|
|
const double& y1 = bhp_array[1];
|
|
thp = findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
//Target bhp greater than all values in array, extrapolate
|
|
else if (bhp > bhp_array[nthp-1]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[nthp-2];
|
|
const double& x1 = thp_array[nthp-1];
|
|
const double& y0 = bhp_array[nthp-2];
|
|
const double& y1 = bhp_array[nthp-1];
|
|
thp = findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array");
|
|
}
|
|
}
|
|
|
|
return thp;
|
|
}
|
|
|
|
template <typename T>
|
|
T getFlo(const VFPProdTable& table,
|
|
const T& aqua,
|
|
const T& liquid,
|
|
const T& vapour)
|
|
{
|
|
auto type = table.getFloType();
|
|
switch (type) {
|
|
case VFPProdTable::FLO_TYPE::FLO_OIL:
|
|
//Oil = liquid phase
|
|
return liquid;
|
|
case VFPProdTable::FLO_TYPE::FLO_LIQ:
|
|
//Liquid = aqua + liquid phases
|
|
return aqua + liquid;
|
|
case VFPProdTable::FLO_TYPE::FLO_GAS:
|
|
//Gas = vapor phase
|
|
return vapour;
|
|
default:
|
|
throw std::logic_error("Invalid FLO_TYPE");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
T getFlo(const VFPInjTable& table,
|
|
const T& aqua,
|
|
const T& liquid,
|
|
const T& vapour)
|
|
{
|
|
auto type = table.getFloType();
|
|
switch (type) {
|
|
case VFPInjTable::FLO_TYPE::FLO_OIL:
|
|
//Oil = liquid phase
|
|
return liquid;
|
|
case VFPInjTable::FLO_TYPE::FLO_WAT:
|
|
//Liquid = aqua phase
|
|
return aqua;
|
|
case VFPInjTable::FLO_TYPE::FLO_GAS:
|
|
//Gas = vapor phase
|
|
return vapour;
|
|
default:
|
|
throw std::logic_error("Invalid FLO_TYPE");
|
|
}
|
|
}
|
|
|
|
static constexpr double threshold = 1e-12;
|
|
|
|
template <typename T>
|
|
T getWFR(const VFPProdTable& table,
|
|
const T& aqua,
|
|
const T& liquid,
|
|
const T& vapour)
|
|
{
|
|
auto type = table.getWFRType();
|
|
switch(type) {
|
|
case VFPProdTable::WFR_TYPE::WFR_WOR: {
|
|
//Water-oil ratio = water / oil
|
|
return chopNegativeValues(-aqua) / max(threshold, chopNegativeValues(-liquid));
|
|
}
|
|
case VFPProdTable::WFR_TYPE::WFR_WCT:
|
|
//Water cut = water / (water + oil)
|
|
return chopNegativeValues(-aqua) / max(threshold, chopNegativeValues(-aqua - liquid));
|
|
case VFPProdTable::WFR_TYPE::WFR_WGR:
|
|
//Water-gas ratio = water / gas
|
|
return chopNegativeValues(-aqua) / max(threshold, chopNegativeValues(-vapour));
|
|
default:
|
|
throw std::logic_error("Invalid WFR_TYPE");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
T getGFR(const VFPProdTable& table,
|
|
const T& aqua,
|
|
const T& liquid,
|
|
const T& vapour)
|
|
{
|
|
auto type = table.getGFRType();
|
|
switch(type) {
|
|
case VFPProdTable::GFR_TYPE::GFR_GOR:
|
|
// Gas-oil ratio = gas / oil
|
|
return chopNegativeValues(-vapour) / max(threshold, chopNegativeValues(-liquid));
|
|
case VFPProdTable::GFR_TYPE::GFR_GLR:
|
|
// Gas-liquid ratio = gas / (oil + water)
|
|
return chopNegativeValues(-vapour) / max(threshold, chopNegativeValues(-liquid - aqua));
|
|
case VFPProdTable::GFR_TYPE::GFR_OGR:
|
|
// Oil-gas ratio = oil / gas
|
|
return chopNegativeValues(-liquid) / max(threshold, chopNegativeValues(-vapour));
|
|
default:
|
|
throw std::logic_error("Invalid GFR_TYPE");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
const T& getTable(const std::map<int, std::reference_wrapper<const T>>& tables, int table_id)
|
|
{
|
|
auto entry = tables.find(table_id);
|
|
if (entry == tables.end()) {
|
|
OPM_THROW(std::invalid_argument,
|
|
"Nonexistent VFP table " +
|
|
std::to_string(table_id) + " referenced.");
|
|
}
|
|
else {
|
|
return entry->second.get();
|
|
}
|
|
}
|
|
|
|
template <>
|
|
VFPProdTable::FLO_TYPE getType(const VFPProdTable& table)
|
|
{
|
|
return table.getFloType();
|
|
}
|
|
|
|
template <>
|
|
VFPProdTable::WFR_TYPE getType(const VFPProdTable& table)
|
|
{
|
|
return table.getWFRType();
|
|
}
|
|
|
|
template <>
|
|
VFPProdTable::GFR_TYPE getType(const VFPProdTable& table)
|
|
{
|
|
return table.getGFRType();
|
|
}
|
|
|
|
/**
|
|
* Returns the type variable for FLO for injection tables
|
|
*/
|
|
template <>
|
|
VFPInjTable::FLO_TYPE getType(const VFPInjTable& table)
|
|
{
|
|
return table.getFloType();
|
|
}
|
|
|
|
template const VFPInjTable& getTable<VFPInjTable>(const std::map<int, std::reference_wrapper<const VFPInjTable>>&, int);
|
|
template const VFPProdTable& getTable<VFPProdTable>(const std::map<int, std::reference_wrapper<const VFPProdTable>>&, int);
|
|
|
|
#define INSTANCE(...) \
|
|
template __VA_ARGS__ getFlo(const VFPInjTable&, const __VA_ARGS__&, const __VA_ARGS__&, const __VA_ARGS__&); \
|
|
template __VA_ARGS__ getFlo(const VFPProdTable&, const __VA_ARGS__&, const __VA_ARGS__&, const __VA_ARGS__&); \
|
|
template __VA_ARGS__ getGFR(const VFPProdTable&, const __VA_ARGS__&, const __VA_ARGS__&, const __VA_ARGS__&); \
|
|
template __VA_ARGS__ getWFR(const VFPProdTable&, const __VA_ARGS__&, const __VA_ARGS__&, const __VA_ARGS__&);
|
|
|
|
INSTANCE(double)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 4u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 5u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 6u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 7u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 8u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 9u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 10u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 3, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 4, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 5, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 6, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 7, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 8, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 9, 0u>)
|
|
|
|
|
|
} // namespace detail
|
|
} // namespace Opm
|