opm-simulators/opm/simulators/wells/WellGroupControls.cpp
2023-03-27 16:03:40 +02:00

546 lines
25 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellGroupControls.hpp>
#include <opm/input/eclipse/EclipseState/Phase.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/Group/GConSale.hpp>
#include <opm/input/eclipse/Schedule/Group/Group.hpp>
#include <opm/input/eclipse/Schedule/ScheduleTypes.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/TargetCalculator.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <algorithm>
#include <cassert>
namespace Opm
{
template<class EvalWell>
void WellGroupControls::
getGroupInjectionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
const EvalWell& bhp,
const EvalWell& injection_rate,
const RateConvFunc& rateConverter,
double efficiencyFactor,
EvalWell& control_eq,
DeferredLogger& deferred_logger) const
{
// Setting some defaults to silence warnings below.
// Will be overwritten in the switch statement.
Phase injectionPhase = Phase::WATER;
switch (injectorType) {
case InjectorType::WATER:
{
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
injectionPhase = Phase::GAS;
break;
}
default:
// Should not be here.
assert(false);
}
auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase);
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
if (!group.injectionGroupControlAvailable(injectionPhase)) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_.wellEcl().injectionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Inject share of parents control
const auto& parent = schedule.getGroup(group.parent(), well_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupInjectionControl(parent, well_state,
group_state, schedule,
summaryState, injectorType,
bhp, injection_rate,
rateConverter,
efficiencyFactor,
control_eq,
deferred_logger);
return;
}
}
const auto& well = well_.wellEcl();
const auto pu = well_.phaseUsage();
if (!group.isInjectionGroup()) {
// use bhp as control eq and let the updateControl code find a valid control
const auto& controls = well.injectionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(pu.num_phases, 1.0);
rateConverter(0, well_.pvtRegionIdx(), std::nullopt, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
double sales_target = 0;
if (schedule[well_.currentStep()].gconsale().has(group.name())) {
const auto& gconsale = schedule[well_.currentStep()].gconsale().get(group.name(), summaryState);
sales_target = gconsale.sales_target;
}
WellGroupHelpers::InjectionTargetCalculator tcalc(currentGroupControl, pu,
resv_coeff, group.name(),
sales_target, group_state,
injectionPhase,
group.has_gpmaint_control(injectionPhase, currentGroupControl),
deferred_logger);
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state,
group_state, well_.currentStep(),
well_.guideRate(),
tcalc.guideTargetMode(),
pu, false, injectionPhase);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child);
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.injection_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
std::optional<Group::InjectionControls> ctrl;
if (!group.has_gpmaint_control(injectionPhase, currentGroupControl))
ctrl = group.injectionControls(injectionPhase, summaryState);
const double orig_target = tcalc.groupTarget(ctrl,
deferred_logger);
const auto chain = WellGroupHelpers::groupChainTopBot(well_.name(), group.name(),
schedule, well_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || well_.guideRate()->has(chain[ii], injectionPhase)) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto current_rate = injection_rate;
control_eq = current_rate - target_rate;
}
std::optional<double>
WellGroupControls::
getGroupInjectionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
const RateConvFunc& rateConverter,
double efficiencyFactor,
DeferredLogger& deferred_logger) const
{
// Setting some defaults to silence warnings below.
// Will be overwritten in the switch statement.
Phase injectionPhase = Phase::WATER;
switch (injectorType) {
case InjectorType::WATER:
{
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
injectionPhase = Phase::GAS;
break;
}
default:
// Should not be here.
assert(false);
}
auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase);
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
if (!group.injectionGroupControlAvailable(injectionPhase)) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
return std::nullopt;
} else {
// Inject share of parents control
const auto& parent = schedule.getGroup( group.parent(), well_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
return getGroupInjectionTargetRate(parent, well_state, group_state,
schedule, summaryState, injectorType,
rateConverter, efficiencyFactor, deferred_logger);
}
}
const auto pu = well_.phaseUsage();
if (!group.isInjectionGroup()) {
return std::nullopt;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(pu.num_phases, 1.0);
rateConverter(0, well_.pvtRegionIdx(), std::nullopt, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
double sales_target = 0;
if (schedule[well_.currentStep()].gconsale().has(group.name())) {
const auto& gconsale = schedule[well_.currentStep()].gconsale().get(group.name(), summaryState);
sales_target = gconsale.sales_target;
}
WellGroupHelpers::InjectionTargetCalculator tcalc(currentGroupControl, pu, resv_coeff,
group.name(), sales_target, group_state,
injectionPhase,
group.has_gpmaint_control(injectionPhase, currentGroupControl),
deferred_logger);
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state,
well_.currentStep(), well_.guideRate(),
tcalc.guideTargetMode(), pu, false, injectionPhase);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet.
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.injection_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
std::optional<Group::InjectionControls> ctrl;
if (!group.has_gpmaint_control(injectionPhase, currentGroupControl))
ctrl = group.injectionControls(injectionPhase, summaryState);
const double orig_target = tcalc.groupTarget(ctrl, deferred_logger);
const auto chain = WellGroupHelpers::groupChainTopBot(well_.name(), group.name(), schedule, well_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || well_.guideRate()->has(chain[ii], injectionPhase)) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
return std::max(0.0, target / efficiencyFactor);
}
template<class EvalWell>
void WellGroupControls::getGroupProductionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
const RateConvFunc& rateConverter,
double efficiencyFactor,
EvalWell& control_eq,
DeferredLogger& deferred_logger) const
{
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.productionGroupControlAvailable()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_.wellEcl().productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup(group.parent(), well_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupProductionControl(parent, well_state, group_state,
schedule, summaryState, bhp,
rates, rateConverter,
efficiencyFactor, control_eq, deferred_logger);
return;
}
}
const auto& well = well_.wellEcl();
const auto pu = well_.phaseUsage();
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a valid control
const auto& controls = well.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(well_.phaseUsage().num_phases, 1.0);
rateConverter(0, well_.pvtRegionIdx(), group.name(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
// gconsale may adjust the grat target.
// the adjusted rates is send to the targetCalculator
double gratTargetFromSales = 0.0;
if (group_state.has_grat_sales_target(group.name()))
gratTargetFromSales = group_state.grat_sales_target(group.name());
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff,
gratTargetFromSales, group.name(),
group_state,
group.has_gpmaint_control(currentGroupControl));
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state,
well_.currentStep(),
well_.guideRate(),
tcalc.guideTargetMode(),
pu, true, Phase::OIL);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child);
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
std::optional<Group::ProductionControls> ctrl;
if (!group.has_gpmaint_control(currentGroupControl))
ctrl = group.productionControls(summaryState);
const double orig_target = tcalc.groupTarget(ctrl, deferred_logger);
const auto chain = WellGroupHelpers::groupChainTopBot(well_.name(), group.name(),
schedule, well_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || well_.guideRate()->has(chain[ii])) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
}
double WellGroupControls::
getGroupProductionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const RateConvFunc& rateConverter,
double efficiencyFactor,
DeferredLogger& deferred_logger) const
{
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.productionGroupControlAvailable()) {
return 1.0;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup(group.parent(), well_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
return getGroupProductionTargetRate(parent, well_state, group_state,
schedule, summaryState,
rateConverter, efficiencyFactor,
deferred_logger);
}
}
const auto pu = well_.phaseUsage();
if (!group.isProductionGroup()) {
return 1.0;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(well_.phaseUsage().num_phases, 1.0);
rateConverter(0, well_.pvtRegionIdx(), group.name(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
// gconsale may adjust the grat target.
// the adjusted rates is send to the targetCalculator
double gratTargetFromSales = 0.0;
if (group_state.has_grat_sales_target(group.name()))
gratTargetFromSales = group_state.grat_sales_target(group.name());
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales, group.name(), group_state, group.has_gpmaint_control(currentGroupControl));
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state,
well_.currentStep(),
well_.guideRate(),
tcalc.guideTargetMode(),
pu, true, Phase::OIL);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet.
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
std::optional<Group::ProductionControls> ctrl;
if (!group.has_gpmaint_control(currentGroupControl))
ctrl = group.productionControls(summaryState);
const double orig_target = tcalc.groupTarget(ctrl, deferred_logger);
const auto chain = WellGroupHelpers::groupChainTopBot(well_.name(), group.name(),
schedule, well_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || well_.guideRate()->has(chain[ii])) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto& ws = well_state.well(well_.indexOfWell());
const auto& rates = ws.surface_rates;
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
double scale = 1.0;
if (target_rate == 0.0) {
return 0.0;
}
if (current_rate > 1e-14)
scale = target_rate/current_rate;
return scale;
}
#define INSTANCE(...) \
template void WellGroupControls:: \
getGroupInjectionControl<__VA_ARGS__>(const Group&, \
const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const InjectorType&, \
const __VA_ARGS__& bhp, \
const __VA_ARGS__& injection_rate, \
const RateConvFunc& rateConverter, \
double efficiencyFactor, \
__VA_ARGS__& control_eq, \
DeferredLogger& deferred_logger) const; \
template void WellGroupControls:: \
getGroupProductionControl<__VA_ARGS__>(const Group&, \
const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const __VA_ARGS__& bhp, \
const std::vector<__VA_ARGS__>&, \
const RateConvFunc& rateConverter, \
double efficiencyFactor, \
__VA_ARGS__& control_eq, \
DeferredLogger& deferred_logger) const; \
INSTANCE(DenseAd::Evaluation<double,3,0u>)
INSTANCE(DenseAd::Evaluation<double,4,0u>)
INSTANCE(DenseAd::Evaluation<double,5,0u>)
INSTANCE(DenseAd::Evaluation<double,6,0u>)
INSTANCE(DenseAd::Evaluation<double,7,0u>)
INSTANCE(DenseAd::Evaluation<double,8,0u>)
INSTANCE(DenseAd::Evaluation<double,9,0u>)
INSTANCE(DenseAd::Evaluation<double,-1,4u>)
INSTANCE(DenseAd::Evaluation<double,-1,5u>)
INSTANCE(DenseAd::Evaluation<double,-1,6u>)
INSTANCE(DenseAd::Evaluation<double,-1,7u>)
INSTANCE(DenseAd::Evaluation<double,-1,8u>)
INSTANCE(DenseAd::Evaluation<double,-1,9u>)
INSTANCE(DenseAd::Evaluation<double,-1,10u>)
} // namespace Opm