opm-simulators/opm/simulators/wells/ParallelPAvgDynamicSourceData.cpp
Bård Skaflestad 7056c81a7b Allow for Sparse Source-Location Subsets
If a well is nominally connected in inactive cells, i.e., if its
connections have not been filtered down to the active connections
only, then 'allIndices' may not be a permutation of

    0 .. allIndices.size()-1

Handle this case by sizing 'storageIndex_' according to the maximum
index value insted of 'allIndices.size()'.
2024-03-19 09:17:48 +01:00

169 lines
5.7 KiB
C++

/*
Copyright 2023 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/ParallelPAvgDynamicSourceData.hpp>
#include <opm/simulators/utils/ParallelCommunication.hpp>
#include <opm/grid/common/CommunicationUtils.hpp>
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <numeric>
#include <utility>
#include <vector>
Opm::ParallelPAvgDynamicSourceData::
ParallelPAvgDynamicSourceData(const Parallel::Communication& comm,
const std::vector<std::size_t>& sourceLocations,
GlobalToLocal localCellIdx)
: PAvgDynamicSourceData { sourceLocations }
, comm_ { comm }
{
this->finaliseConstruction(sourceLocations, std::move(localCellIdx));
}
void Opm::ParallelPAvgDynamicSourceData::setToZero()
{
std::fill_n(this->localSrc_.begin(), this->localSrc_.size(), 0.0);
}
void
Opm::ParallelPAvgDynamicSourceData::
reconstruct(const std::vector<std::size_t>& sourceLocations,
GlobalToLocal localCellIdx)
{
PAvgDynamicSourceData::reconstruct(sourceLocations); // Reconstruct base
this->finaliseConstruction(sourceLocations, std::move(localCellIdx));
}
void Opm::ParallelPAvgDynamicSourceData::collectLocalSources(Evaluator eval)
{
auto localIx = std::size_t{0};
for (const auto& location : this->locations_) {
eval(location.cell, this->localSourceTerm(localIx++));
}
}
void Opm::ParallelPAvgDynamicSourceData::synchroniseSources()
{
this->comm_.get()
.allgatherv(this->localSrc_.data(), // Input (from)
static_cast<int>(this->localSrc_.size()),
this->src_.data(), // Output (to)
this->allSizes_.data(), // #elements per rank
this->startPointers_.data()); // Output offsets
}
std::vector<double>::size_type
Opm::ParallelPAvgDynamicSourceData::
storageIndex(const std::vector<double>::size_type elemIndex) const
{
return this->storageIndex_[elemIndex];
}
void
Opm::ParallelPAvgDynamicSourceData::
finaliseConstruction(const std::vector<std::size_t>& sourceLocations,
GlobalToLocal localCellIdx)
{
auto ix = std::size_t{0};
this->locations_.clear();
for (const auto& location : sourceLocations) {
if (const auto cell = localCellIdx(location); cell >= 0) {
this->locations_.push_back({ ix, cell });
}
ix += 1;
}
this->localSrc_.assign(numSpanItems() * this->locations_.size(), 0.0);
this->defineCommunication();
}
Opm::PAvgDynamicSourceData::SourceDataSpan<double>
Opm::ParallelPAvgDynamicSourceData::localSourceTerm(const std::size_t localIx)
{
return this->sourceTerm(localIx, this->localSrc_);
}
void Opm::ParallelPAvgDynamicSourceData::defineCommunication()
{
// 1) Determine origins/owning ranks for all source terms.
auto ixVec = std::vector<std::size_t>(this->locations_.size());
std::transform(this->locations_.begin(), this->locations_.end(),
ixVec.begin(),
[](const auto& location) { return location.ix; });
constexpr auto numItems = numSpanItems();
const auto& [allIndices, allIxStart] = allGatherv(ixVec, this->comm_.get());
// -----------------------------------------------------------------------
// 2) Determine starting pointers/offsets/displacements for received
// basic elements from each rank. There are 'numItems' basic data
// elements for each source term.
this->startPointers_.resize(allIxStart.size());
std::transform(allIxStart.begin(), allIxStart.end(),
this->startPointers_.begin(),
[](const int start)
{
return numItems * start;
});
// -----------------------------------------------------------------------
// 3) Determine number of basic data elements to receive from each rank.
this->allSizes_.resize(allIxStart.size() - 1);
std::adjacent_difference(this->startPointers_.begin() + 1,
this->startPointers_.end(),
this->allSizes_.begin());
// -----------------------------------------------------------------------
// 4) Build translation mapping from source term element indices to
// storage indices.
//
// Note that if the source terms aren't all active--e.g., if a well
// is connected in deactivated cells--then allIndices is not a
// permutation of 0..allIndices.size()-1 and the maximum source
// location may exceed size()-1. Resize the storageIndex_ according
// to the largest source location ID.
if (auto maxIxPos = std::max_element(allIndices.begin(), allIndices.end());
maxIxPos != allIndices.end())
{
// +1 for zero-based indices.
this->storageIndex_.resize(*maxIxPos + 1);
}
auto storageIx = std::vector<double>::size_type{0};
for (const auto& elemIndex : allIndices) {
this->storageIndex_[elemIndex] = storageIx++;
}
}