mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 02:30:18 -06:00
c3e0f4f492
the commit date is significantly off for (ancient) commits before the dumux SVN repository was split into -devel and -stable.
322 lines
14 KiB
C++
322 lines
14 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*****************************************************************************
|
|
* Copyright (C) 2009-2012 by Andreas Lauser *
|
|
* Copyright (C) 2011 by Bernd Flemisch *
|
|
* Copyright (C) 2010-2012 by Klaus Mosthaf *
|
|
* Copyright (C) 2010 by Melanie Darcis *
|
|
* Copyright (C) 2010 by Benjamin Faigle *
|
|
* Copyright (C) 2012 by Markus Wolff *
|
|
* Copyright (C) 2012 by Philipp Nuske *
|
|
* *
|
|
* This program is free software: you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation, either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
*****************************************************************************/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief Tutorial problem for a fully coupled twophase box model.
|
|
*/
|
|
#ifndef DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/
|
|
#define DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/
|
|
|
|
// The numerical model
|
|
#include <dumux/boxmodels/immiscible/immisciblemodel.hh>
|
|
|
|
// The components that are used
|
|
#include <dumux/material/components/h2o.hh>
|
|
#include <dumux/material/components/lnapl.hh>
|
|
|
|
// The material laws
|
|
#include <dumux/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh> /*@\label{tutorial-coupled:rawLawInclude}@*/
|
|
#include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh>
|
|
#include <dumux/material/fluidmatrixinteractions/mp/2padapter.hh>
|
|
|
|
// The DUNE grid used
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dumux/common/cubegridcreator.hh>
|
|
|
|
// Dune::FieldVector and Dune::FieldMatrix
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
namespace Dumux {
|
|
|
|
// forward declaration of the problem class
|
|
template <class TypeTag>
|
|
class TutorialProblemCoupled;
|
|
|
|
namespace Properties {
|
|
// Create a new type tag for the problem
|
|
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxImmiscibleTwoPhase)); /*@\label{tutorial-coupled:create-type-tag}@*/
|
|
|
|
// Set the "Problem" property
|
|
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
|
|
{ typedef Dumux::TutorialProblemCoupled<TypeTag> type;};
|
|
|
|
// Set grid and the grid creator to be used
|
|
SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid</*dim=*/2>); /*@\label{tutorial-coupled:set-grid}@*/
|
|
SET_TYPE_PROP(TutorialProblemCoupled, GridCreator, Dumux::CubeGridCreator<TypeTag>); /*@\label{tutorial-coupled:set-gridcreator}@*/
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(TutorialProblemCoupled, WettingPhase) /*@\label{tutorial-coupled:2p-system-start}@*/
|
|
{
|
|
private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
public: typedef Dumux::LiquidPhase<Scalar, Dumux::H2O<Scalar> > type; /*@\label{tutorial-coupled:wettingPhase}@*/
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
SET_PROP(TutorialProblemCoupled, NonwettingPhase)
|
|
{
|
|
private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
public: typedef Dumux::LiquidPhase<Scalar, Dumux::LNAPL<Scalar> > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/
|
|
}; /*@\label{tutorial-coupled:2p-system-end}@*/
|
|
|
|
// Set the material law
|
|
SET_PROP(TutorialProblemCoupled, MaterialLaw)
|
|
{
|
|
private:
|
|
// material law typedefs
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
// select material law to be used
|
|
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/
|
|
// adapter for absolute law
|
|
typedef EffToAbsLaw<RawMaterialLaw> TwoPMaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
|
|
|
|
public:
|
|
typedef TwoPAdapter<wPhaseIdx, TwoPMaterialLaw> type;
|
|
};
|
|
|
|
// Disable gravity
|
|
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
|
|
|
|
// define the properties required by the cube grid creator
|
|
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeX, 300.0);
|
|
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeY, 60.0);
|
|
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeZ, 0.0);
|
|
|
|
SET_INT_PROP(TutorialProblemCoupled, CellsX, 100);
|
|
SET_INT_PROP(TutorialProblemCoupled, CellsY, 1);
|
|
SET_INT_PROP(TutorialProblemCoupled, CellsZ, 0);
|
|
}
|
|
|
|
/*!
|
|
* \ingroup TwoPBoxModel
|
|
*
|
|
* \brief Tutorial problem for a fully coupled twophase box model.
|
|
*/
|
|
template <class TypeTag>
|
|
class TutorialProblemCoupled
|
|
: public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial-coupled:def-problem}@*/
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
|
|
// Grid dimension
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
// Dumux specific types
|
|
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
|
|
// get material law from property system
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
// determine type of the parameter objects depening on selected material law
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/
|
|
|
|
// phase indices
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
|
|
enum { nPhaseIdx = FluidSystem::nPhaseIdx };
|
|
|
|
// indices of the conservation equations
|
|
enum { contiWEqIdx = Indices::conti0EqIdx + wPhaseIdx };
|
|
enum { contiNEqIdx = Indices::conti0EqIdx + nPhaseIdx };
|
|
|
|
public:
|
|
TutorialProblemCoupled(TimeManager &timeManager)
|
|
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
|
|
, eps_(3e-6)
|
|
{
|
|
// set main diagonal entries of the permeability tensor to a value
|
|
// setting to a single value means: isotropic, homogeneous
|
|
K_ = this->toDimMatrix_(1e-7);
|
|
|
|
//set residual saturations
|
|
materialParams_.setSwr(0.0); /*@\label{tutorial-coupled:setLawParams}@*/
|
|
materialParams_.setSnr(0.0);
|
|
|
|
//parameters of Brooks & Corey Law
|
|
materialParams_.setPe(500.0);
|
|
materialParams_.setLambda(2);
|
|
}
|
|
|
|
//! Specifies the problem name. This is used as a prefix for files
|
|
//! generated by the simulation.
|
|
const char *name() const
|
|
{ return "tutorial_coupled"; }
|
|
|
|
//! Returns true if a restart file should be written.
|
|
bool shouldWriteRestartFile() const /*@\label{tutorial-coupled:restart}@*/
|
|
{ return false; }
|
|
|
|
//! Returns true if the current solution should be written to disk
|
|
//! as a VTK file
|
|
bool shouldWriteOutput() const /*@\label{tutorial-coupled:output}@*/
|
|
{
|
|
return (this->timeManager().timeStepIndex() % 5 == 0) ||
|
|
this->timeManager().willBeFinished() ;
|
|
}
|
|
|
|
//! Returns the temperature within a finite volume. We use constant
|
|
//! 10 degrees Celsius.
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return 283.15; }
|
|
|
|
/*! Intrinsic permeability tensor K \f$[m^2]\f$ depending
|
|
* on the position in the domain
|
|
*
|
|
* \param context The execution context
|
|
* \param scvIdx The local index of the degree of freedom
|
|
*
|
|
* Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, /*@\label{tutorial-coupled:permeability}@*/
|
|
int spaceIdx, int timeIdx) const
|
|
{ return K_; }
|
|
|
|
/*! Define the porosity \f$[-]\f$ of the porous medium depending
|
|
* on the position in the domain
|
|
*
|
|
* \param context The execution context
|
|
* \param scvIdx The local index of the degree of freedom
|
|
*
|
|
* Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, /*@\label{tutorial-coupled:porosity}@*/
|
|
int spaceIdx, int timeIdx) const
|
|
{ return 0.2; }
|
|
|
|
/*! Return the parameter object for the material law (i.e. Brooks-Corey)
|
|
* depending on the position in the domain
|
|
*
|
|
* \param context The execution context
|
|
* \param scvIdx The local index of the degree of freedom
|
|
*
|
|
* Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context &context, /*@\label{tutorial-coupled:matLawParams}@*/
|
|
int spaceIdx, int timeIdx) const
|
|
{ return materialParams_; }
|
|
|
|
//! Evaluate the boundary conditions.
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context, int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (pos[0] < eps_) {
|
|
// Free-flow conditions on left boundary
|
|
const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Scalar Sw = 1.0;
|
|
ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setSaturation(wPhaseIdx, Sw);
|
|
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fs);
|
|
fs.setPressure(wPhaseIdx, 200e3);
|
|
fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]);
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (pos[0] > this->bboxMax()[0] - eps_) {
|
|
// forced outflow at the right boundary
|
|
RateVector massRate(0.0);
|
|
|
|
massRate[contiWEqIdx] = 0.0; // [kg / (s m^2)]
|
|
massRate[contiNEqIdx] = 3e-2; // [kg / (s m^2)]
|
|
|
|
values.setMassRate(massRate);
|
|
}
|
|
else // no flow at the remaining boundaries
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! Evaluates the source term for all phases within a given
|
|
//! sub-control-volume. In this case, the 'values' parameter
|
|
//! stores the rate mass generated or annihilated per volume unit
|
|
//! in [kg / (m^3 * s)]. Positive values mean that mass is created.
|
|
template <class Context>
|
|
void source(RateVector &values, const Context &context, int spaceIdx, int timeIdx) const
|
|
{
|
|
values[contiWEqIdx] = 0.0;
|
|
values[contiNEqIdx]= 0.0;
|
|
}
|
|
|
|
// Evaluates the initial value for a control volume. For this
|
|
// method, the 'values' parameter stores primary variables.
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
|
|
{
|
|
ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
|
|
// the domain is initially fully saturated by LNAPL
|
|
Scalar Sw = 0.0;
|
|
fs.setSaturation(wPhaseIdx, Sw);
|
|
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
|
|
|
|
// the temperature is given by the temperature() method
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
// set pressure of the wetting phase to 200 kPa = 2 bar
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx), fs);
|
|
fs.setPressure(wPhaseIdx, 200e3);
|
|
fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]);
|
|
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
private:
|
|
DimMatrix K_;
|
|
// Object that holds the values/parameters of the selected material law.
|
|
MaterialLawParams materialParams_; /*@\label{tutorial-coupled:matParamsObject}@*/
|
|
|
|
// small epsilon value
|
|
Scalar eps_;
|
|
};
|
|
}
|
|
|
|
#endif
|