opm-simulators/opm/simulators/linalg/BlackoilAmg.hpp

1119 lines
44 KiB
C++

/*
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AMG_HEADER_INCLUDED
#define OPM_AMG_HEADER_INCLUDED
#include <opm/simulators/linalg/matrixblock.hh>
#include <opm/simulators/linalg/ParallelOverlappingILU0.hpp>
#include <opm/simulators/linalg/FlowLinearSolverParameters.hpp>
#include <opm/simulators/linalg/CPRPreconditioner.hpp>
#include <opm/simulators/linalg/amgcpr.hh>
#include <opm/simulators/linalg/twolevelmethodcpr.hh>
#include <dune/istl/paamg/twolevelmethod.hh>
#include <dune/istl/paamg/aggregates.hh>
#include <dune/istl/bvector.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/schwarz.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/scalarproducts.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>
namespace Dune
{
namespace Amg
{
template<class M, class Norm>
class UnSymmetricCriterion;
}
}
namespace Opm
{
namespace Amg
{
template<int Row, int Column>
class Element
{
public:
enum { /* @brief We preserve the sign.*/
is_sign_preserving = true
};
template<class M>
typename M::field_type operator()(const M& m) const
{
return m[Row][Column];
}
};
} // namespace Amg
} // namespace Opm
namespace Dune
{
template <class Scalar, int n, int m>
class MatrixBlock;
}
namespace Opm
{
namespace Detail
{
/**
* \brief Creates a MatrixAdapter as an operator, storing it in a unique_ptr.
*
* The first argument is used to specify the return type using function overloading.
* \param matrix The matrix to wrap.
*/
template<class M, class X, class Y, class T>
std::unique_ptr< Dune::MatrixAdapter<M,X,Y> >
createOperator(const Dune::MatrixAdapter<M,X,Y>&, const M& matrix, const T&)
{
return std::make_unique< Dune::MatrixAdapter<M,X,Y> >(matrix);
}
/**
* \brief Creates an OverlappingSchwarzOperator as an operator, storing it in a unique_ptr.
*
* The first argument is used to specify the return type using function overloading.
* \param matrix The matrix to wrap.
* \param comm The object encapsulating the parallelization information.
*/
template<class M, class X, class Y, class T>
std::unique_ptr< Dune::OverlappingSchwarzOperator<M,X,Y,T> >
createOperator(const Dune::OverlappingSchwarzOperator<M,X,Y,T>&, const M& matrix, const T& comm)
{
return std::make_unique< Dune::OverlappingSchwarzOperator<M,X,Y,T> >(matrix, comm);
}
//! \brief Applies diagonal scaling to the discretization Matrix (Scheichl, 2003)
//!
//! See section 3.2.3 of Scheichl, Masson: Decoupling and Block Preconditioning for
//! Sedimentary Basin Simulations, 2003.
//! \param op The operator that stems from the discretization.
//! \param comm The communication objecte describing the data distribution.
//! \param pressureEqnIndex The index of the pressure in the matrix block
//! \retun A pair of the scaled matrix and the associated operator-
template<class Operator, class Vector>
std::unique_ptr<typename Operator::matrix_type>
scaleMatrixDRS(const Operator& op, std::size_t pressureEqnIndex, const Vector& weights, const Opm::CPRParameter& param)
{
using Matrix = typename Operator::matrix_type;
using Block = typename Matrix::block_type;
using BlockVector = typename Vector::block_type;
std::unique_ptr<Matrix> matrix(new Matrix(op.getmat()));
if (param.cpr_use_drs_) {
const auto endi = matrix->end();
for (auto i = matrix->begin(); i != endi; ++i) {
const BlockVector& bw = weights[i.index()];
const auto endj = (*i).end();
for (auto j = (*i).begin(); j != endj; ++j) {
Block& block = *j;
BlockVector& bvec = block[pressureEqnIndex];
// should introduce limits which also change the weights
block.mtv(bw, bvec);
}
}
}
return matrix;
}
//! \brief Applies diagonal scaling to the discretization Matrix (Scheichl, 2003)
//!
//! See section 3.2.3 of Scheichl, Masson: Decoupling and Block Preconditioning for
//! Sedimentary Basin Simulations, 2003.
//! \param vector The vector to scale
//! \param pressureEqnIndex The index of the pressure in the matrix block
template<class Vector>
void scaleVectorDRS(Vector& vector, std::size_t pressureEqnIndex, const Opm::CPRParameter& param, const Vector& weights)
{
using Block = typename Vector::block_type;
if (param.cpr_use_drs_) {
for (std::size_t j = 0; j < vector.size(); ++j) {
Block& block = vector[j];
const Block& bw = weights[j];
block[pressureEqnIndex] = bw.dot(block);
}
}
}
//! \brief TMP to create the scalar pendant to a real block matrix, vector, smoother, etc.
//!
//! \code
//! using Scalar = ScalarType<BlockType>::value;
//! \endcode
//! will get the corresponding scalar type.
template<typename NonScalarType>
struct ScalarType
{
};
template<typename FieldType, int SIZE>
struct ScalarType<Dune::FieldVector<FieldType, SIZE> >
{
typedef Dune::FieldVector<FieldType, 1> value;
};
template<typename FieldType, int ROWS, int COLS>
struct ScalarType<Dune::FieldMatrix<FieldType, ROWS, COLS> >
{
typedef Dune::FieldMatrix<FieldType, 1, 1> value;
};
template<typename FieldType, int ROWS, int COLS>
struct ScalarType<Dune::MatrixBlock<FieldType, ROWS, COLS> >
{
typedef Dune::MatrixBlock<FieldType, 1, 1> value;
};
template<typename FieldType, int ROWS, int COLS>
struct ScalarType<Opm::MatrixBlock<FieldType, ROWS, COLS> >
{
typedef Opm::MatrixBlock<FieldType, 1, 1> value;
};
template<typename BlockType, typename Allocator>
struct ScalarType<Dune::BCRSMatrix<BlockType, Allocator> >
{
using ScalarBlock = typename ScalarType<BlockType>::value;
using ScalarAllocator = typename Allocator::template rebind<ScalarBlock>::other;
typedef Dune::BCRSMatrix<ScalarBlock,ScalarAllocator> value;
};
template<typename BlockType, typename Allocator>
struct ScalarType<Dune::BlockVector<BlockType, Allocator> >
{
using ScalarBlock = typename ScalarType<BlockType>::value;
using ScalarAllocator = typename Allocator::template rebind<ScalarBlock>::other;
typedef Dune::BlockVector<ScalarBlock,ScalarAllocator> value;
};
template<typename X>
struct ScalarType<Dune::SeqScalarProduct<X> >
{
typedef Dune::SeqScalarProduct<typename ScalarType<X>::value> value;
};
#define ComposeScalarTypeForSeqPrecond(PREC) \
template<typename M, typename X, typename Y, int l> \
struct ScalarType<PREC<M,X,Y,l> > \
{ \
typedef PREC<typename ScalarType<M>::value, \
typename ScalarType<X>::value, \
typename ScalarType<Y>::value, \
l> value; \
}
ComposeScalarTypeForSeqPrecond(Dune::SeqJac);
ComposeScalarTypeForSeqPrecond(Dune::SeqSOR);
ComposeScalarTypeForSeqPrecond(Dune::SeqSSOR);
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
ComposeScalarTypeForSeqPrecond(Dune::SeqILU);
#else
// Dune::SeqGS and Dune::SeqSOR are the same in DUNE 2.7
ComposeScalarTypeForSeqPrecond(Dune::SeqGS);
ComposeScalarTypeForSeqPrecond(Dune::SeqILU0);
ComposeScalarTypeForSeqPrecond(Dune::SeqILUn);
#endif
#undef ComposeScalarTypeForSeqPrecond
template<typename X, typename Y>
struct ScalarType<Dune::Richardson<X,Y> >
{
typedef Dune::Richardson<typename ScalarType<X>::value,
typename ScalarType<Y>::value> value;
};
template<class M, class X, class Y, class C>
struct ScalarType<Dune::OverlappingSchwarzOperator<M,X,Y,C> >
{
typedef Dune::OverlappingSchwarzOperator<typename ScalarType<M>::value,
typename ScalarType<X>::value,
typename ScalarType<Y>::value,
C> value;
};
template<class M, class X, class Y>
struct ScalarType<Dune::MatrixAdapter<M,X,Y> >
{
typedef Dune::MatrixAdapter<typename ScalarType<M>::value,
typename ScalarType<X>::value,
typename ScalarType<Y>::value> value;
};
template<class X, class C>
struct ScalarType<Dune::OverlappingSchwarzScalarProduct<X,C> >
{
typedef Dune::OverlappingSchwarzScalarProduct<typename ScalarType<X>::value,
C> value;
};
template<class X, class C>
struct ScalarType<Dune::NonoverlappingSchwarzScalarProduct<X,C> >
{
typedef Dune::NonoverlappingSchwarzScalarProduct<typename ScalarType<X>::value,
C> value;
};
template<class X, class Y, class C, class T>
struct ScalarType<Dune::BlockPreconditioner<X,Y,C,T> >
{
typedef Dune::BlockPreconditioner<typename ScalarType<X>::value,
typename ScalarType<Y>::value,
C,
typename ScalarType<T>::value> value;
};
template<class M, class X, class Y, class C>
struct ScalarType<ParallelOverlappingILU0<M,X,Y,C> >
{
typedef ParallelOverlappingILU0<typename ScalarType<M>::value,
typename ScalarType<X>::value,
typename ScalarType<Y>::value,
C> value;
};
template<class B, class N>
struct ScalarType<Dune::Amg::CoarsenCriterion<Dune::Amg::SymmetricCriterion<Dune::BCRSMatrix<B>,N> > >
{
using value = Dune::Amg::CoarsenCriterion<Dune::Amg::SymmetricCriterion<Dune::BCRSMatrix<typename ScalarType<B>::value>, Dune::Amg::FirstDiagonal> >;
};
template<class B, class N>
struct ScalarType<Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<Dune::BCRSMatrix<B>,N> > >
{
using value = Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<Dune::BCRSMatrix<typename ScalarType<B>::value>, Dune::Amg::FirstDiagonal> >;
};
template<class C, std::size_t COMPONENT_INDEX, std::size_t VARIABLE_INDEX>
struct OneComponentCriterionType
{};
template<class B, class N, std::size_t COMPONENT_INDEX, std::size_t VARIABLE_INDEX>
struct OneComponentCriterionType<Dune::Amg::CoarsenCriterion<Dune::Amg::SymmetricCriterion<Dune::BCRSMatrix<B>,N> >, COMPONENT_INDEX, VARIABLE_INDEX>
{
using value = Dune::Amg::CoarsenCriterion<Dune::Amg::SymmetricCriterion<Dune::BCRSMatrix<B>, Opm::Amg::Element<COMPONENT_INDEX, VARIABLE_INDEX> > >;
};
template<class B, class N, std::size_t COMPONENT_INDEX, std::size_t VARIABLE_INDEX>
struct OneComponentCriterionType<Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<Dune::BCRSMatrix<B>,N> >, COMPONENT_INDEX, VARIABLE_INDEX>
{
using value = Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<Dune::BCRSMatrix<B>, Opm::Amg::Element<COMPONENT_INDEX, VARIABLE_INDEX> > >;
};
template<class Operator, class Criterion, class Communication, std::size_t COMPONENT_INDEX, std::size_t VARIABLE_INDEX>
class OneComponentAggregationLevelTransferPolicy;
/**
* @brief A policy class for solving the coarse level system using one step of AMG.
* @tparam O The type of the linear operator used.
* @tparam S The type of the smoother used in AMG.
* @tparam C The type of the crition used for the aggregation within AMG.
* @tparam C1 The type of the information about the communication. Either
* Dune::OwnerOverlapCopyCommunication or Dune::SequentialInformation.
*/
template<class O, class S, class C, class P>
class OneStepAMGCoarseSolverPolicy
{
public:
typedef P LevelTransferPolicy;
/** @brief The type of the linear operator used. */
typedef O Operator;
/** @brief The type of the range and domain of the operator. */
typedef typename O::range_type X;
/** @brief The type of the crition used for the aggregation within AMG.*/
typedef C Criterion;
/** @brief The type of the communication used for AMG.*/
typedef typename P::ParallelInformation Communication;
/** @brief The type of the smoother used in AMG. */
typedef S Smoother;
/** @brief The type of the arguments used for constructing the smoother. */
typedef typename Dune::Amg::SmootherTraits<S>::Arguments SmootherArgs;
/** @brief The type of the AMG construct on the coarse level.*/
typedef Dune::Amg::AMGCPR<Operator,X,Smoother,Communication> AMGType;
/**
* @brief Constructs the coarse solver policy.
* @param args The arguments used for constructing the smoother.
* @param c The crition used for the aggregation within AMG.
*/
OneStepAMGCoarseSolverPolicy(const CPRParameter* param, const SmootherArgs& args, const Criterion& c)
: param_(param), smootherArgs_(args), criterion_(c)
{}
/** @brief Copy constructor. */
OneStepAMGCoarseSolverPolicy(const OneStepAMGCoarseSolverPolicy& other)
: param_(other.param_), coarseOperator_(other.coarseOperator_), smootherArgs_(other.smootherArgs_),
criterion_(other.criterion_)
{}
private:
/**
* @brief A wrapper that makes an inverse operator out of AMG.
*
* The operator will use one step of AMG to approximately solve
* the coarse level system.
*/
struct AMGInverseOperator : public Dune::InverseOperator<X,X>
{
AMGInverseOperator(const CPRParameter* param,
const typename AMGType::Operator& op,
const Criterion& crit,
const typename AMGType::SmootherArgs& args,
const Communication& comm)
: param_(param), amg_(), smoother_(), op_(op), crit_(crit), comm_(comm)
{
if ( param_->cpr_use_amg_ )
{
amg_.reset(new AMGType(op, crit,args, comm));
}
else
{
typename Dune::Amg::ConstructionTraits<Smoother>::Arguments cargs;
cargs.setMatrix(op.getmat());
cargs.setComm(comm);
cargs.setArgs(args);
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
smoother_ = Dune::Amg::ConstructionTraits<Smoother>::construct(cargs);
#else
smoother_.reset(Dune::Amg::ConstructionTraits<Smoother>::construct(cargs));
#endif
}
}
void updatePreconditioner()
{
amg_->updateSolver(crit_, op_, comm_);
}
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::SolverCategory::Category category() const override
{
return std::is_same<Communication, Dune::Amg::SequentialInformation>::value ?
Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping;
}
#endif
void apply(X& x, X& b, double reduction, Dune::InverseOperatorResult& res) override
{
DUNE_UNUSED_PARAMETER(reduction);
DUNE_UNUSED_PARAMETER(res);
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
auto sp = Dune::createScalarProduct<X,Communication>(comm_, op_.category());
#else
using Chooser = Dune::ScalarProductChooser<X,Communication,AMGType::category>;
auto sp = Chooser::construct(comm_);
#endif
Dune::Preconditioner<X,X>* prec = amg_.get();
if ( ! amg_ )
{
prec = smoother_.get();
}
// Linear solver parameters
const double tolerance = param_->cpr_solver_tol_;
const int maxit = param_->cpr_max_ell_iter_;
int verbosity = 0;
if (comm_.communicator().rank() == 0) {
verbosity = param_->cpr_solver_verbose_;
}
if ( param_->cpr_ell_solvetype_ == 0)
{
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::BiCGSTABSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp, *prec,
tolerance, maxit, verbosity);
solver.apply(x,b,res);
#else
// Category of preconditioner will be checked at compile time. Therefore we need
// to cast to the derived class
if ( !amg_ )
{
Dune::BiCGSTABSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp,
reinterpret_cast<Smoother&>(*prec),
tolerance, maxit, verbosity);
solver.apply(x,b,res);
}
else
{
Dune::BiCGSTABSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp,
reinterpret_cast<AMGType&>(*prec),
tolerance, maxit, verbosity);
solver.apply(x,b,res);
}
#endif
}
else if (param_->cpr_ell_solvetype_ == 1)
{
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::CGSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp, *prec,
tolerance, maxit, verbosity);
solver.apply(x,b,res);
#else
// Category of preconditioner will be checked at compile time. Therefore we need
// to cast to the derived class
if ( !amg_ )
{
Dune::CGSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp,
reinterpret_cast<Smoother&>(*prec),
tolerance, maxit, verbosity);
solver.apply(x,b,res);
}
else
{
Dune::CGSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp,
reinterpret_cast<AMGType&>(*prec),
tolerance, maxit, verbosity);
solver.apply(x,b,res);
}
#endif
}
else
{
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::LoopSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp, *prec,
tolerance, maxit, verbosity);
solver.apply(x,b,res);
#else
if ( !amg_ )
{
Dune::LoopSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp,
reinterpret_cast<Smoother&>(*prec),
tolerance, maxit, verbosity);
solver.apply(x,b,res);
}
else
{
Dune::LoopSolver<X> solver(const_cast<typename AMGType::Operator&>(op_), *sp,
reinterpret_cast<AMGType&>(*prec),
tolerance, maxit, verbosity);
solver.apply(x,b,res);
}
#endif
}
// Warn if unknown options.
if (param_->cpr_ell_solvetype_ > 2 && comm_.communicator().rank() == 0) {
OpmLog::warning("cpr_ell_solver_type_unknown", "Unknown CPR elliptic solver type specification, using LoopSolver.");
}
#if ! DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
delete sp;
#endif
}
void apply(X& x, X& b, Dune::InverseOperatorResult& res) override
{
return apply(x,b,1e-8,res);
}
~AMGInverseOperator()
{}
AMGInverseOperator(const AMGInverseOperator& other)
: x_(other.x_), amg_(other.amg_)
{
}
private:
const CPRParameter* param_;
X x_;
std::unique_ptr<AMGType> amg_;
std::shared_ptr<Smoother> smoother_;
const typename AMGType::Operator& op_;
Criterion crit_;
const Communication& comm_;
};
public:
/** @brief The type of solver constructed for the coarse level. */
typedef AMGInverseOperator CoarseLevelSolver;
/**
* @brief Constructs a coarse level solver.
*
* @param transferPolicy The policy describing the transfer between levels.
* @return A pointer to the constructed coarse level solver.
*/
template<class LTP>
CoarseLevelSolver* createCoarseLevelSolver(LTP& transferPolicy)
{
coarseOperator_=transferPolicy.getCoarseLevelOperator();
const LevelTransferPolicy& transfer =
reinterpret_cast<const LevelTransferPolicy&>(transferPolicy);
AMGInverseOperator* inv = new AMGInverseOperator(param_,
*coarseOperator_,
criterion_,
smootherArgs_,
transfer.getCoarseLevelCommunication());
return inv;
}
template<class LTP>
void setCoarseOperator(LTP& transferPolicy)
{
coarseOperator_= transferPolicy.getCoarseLevelOperator();
}
private:
/** @brief The coarse level operator. */
std::shared_ptr<Operator> coarseOperator_;
/** @brief The parameters for the CPR preconditioner. */
const CPRParameter* param_;
/** @brief The arguments used to construct the smoother. */
SmootherArgs smootherArgs_;
/** @brief The coarsening criterion. */
Criterion criterion_;
};
template<class Smoother, class Operator, class Communication>
std::shared_ptr< Smoother >
constructSmoother(const Operator& op,
const typename Dune::Amg::SmootherTraits<Smoother>::Arguments& smargs,
const Communication& comm)
{
typename Dune::Amg::ConstructionTraits<Smoother>::Arguments args;
args.setMatrix(op.getmat());
args.setComm(comm);
args.setArgs(smargs);
// for DUNE < 2.7 ConstructionTraits<Smoother>::construct returns a raw
// pointer, therefore std::make_shared cannot be used here
return std::shared_ptr< Smoother > (Dune::Amg::ConstructionTraits<Smoother>::construct(args));
}
template<class G, class C, class S>
const Dune::Amg::OverlapVertex<typename G::VertexDescriptor>*
buildOverlapVertices(const G& graph, const C& pinfo,
Dune::Amg::AggregatesMap<typename G::VertexDescriptor>& aggregates,
const S& overlap,
std::size_t& overlapCount)
{
// count the overlap vertices.
overlapCount = 0;
const auto& lookup=pinfo.globalLookup();
for ( const auto& vertex: graph ) {
const auto* pair = lookup.pair(vertex);
if(pair!=0 && overlap.contains(pair->local().attribute()))
++overlapCount;
}
// Allocate space
using Vertex = typename G::VertexDescriptor;
using OverlapVertex = Dune::Amg::OverlapVertex<Vertex>;
auto* overlapVertices = new OverlapVertex[overlapCount==0 ? 1 : overlapCount];
if(overlapCount==0)
return overlapVertices;
// Initialize them
overlapCount=0;
for ( const auto& vertex: graph ) {
const auto* pair = lookup.pair(vertex);
if(pair!=0 && overlap.contains(pair->local().attribute())) {
overlapVertices[overlapCount].aggregate = &aggregates[pair->local()];
overlapVertices[overlapCount].vertex = pair->local();
++overlapCount;
}
}
std::sort(overlapVertices, overlapVertices+overlapCount,
[](const OverlapVertex& v1, const OverlapVertex& v2)
{
return *v1.aggregate < *v2.aggregate;
});
// due to the sorting the isolated aggregates (to be skipped) are at the end.
return overlapVertices;
}
template<class M, class G, class V, class C, class S>
void buildCoarseSparseMatrix(M& coarseMatrix, G& fineGraph,
const V& visitedMap,
const C& pinfo,
Dune::Amg::AggregatesMap<typename G::VertexDescriptor>& aggregates,
const S& overlap)
{
using OverlapVertex = Dune::Amg ::OverlapVertex<typename G::VertexDescriptor>;
std::size_t count;
const OverlapVertex* overlapVertices = buildOverlapVertices(fineGraph,
pinfo,
aggregates,
overlap,
count);
// Reset the visited flags of all vertices.
// As the isolated nodes will be skipped we simply mark them as visited
#ifndef NDEBUG
const auto UNAGGREGATED = Dune::Amg::AggregatesMap<typename G::VertexDescriptor>::UNAGGREGATED;
#endif
const auto ISOLATED = Dune::Amg::AggregatesMap<typename G::VertexDescriptor>::ISOLATED;
for ( const auto& vertex: fineGraph ) {
assert(aggregates[vertex] != UNAGGREGATED);
put(visitedMap, vertex, aggregates[vertex]==ISOLATED);
}
Dune::Amg::SparsityBuilder<M> sparsityBuilder(coarseMatrix);
Dune::Amg::ConnectivityConstructor<G,C>::examine(fineGraph, visitedMap, pinfo,
aggregates, overlap,
overlapVertices,
overlapVertices+count,
sparsityBuilder);
delete[] overlapVertices;
}
template<class M, class G, class V, class S>
void buildCoarseSparseMatrix(M& coarseMatrix, G& fineGraph, const V& visitedMap,
const Dune::Amg::SequentialInformation& pinfo,
Dune::Amg::AggregatesMap<typename G::VertexDescriptor>& aggregates,
const S&)
{
// Reset the visited flags of all vertices.
// As the isolated nodes will be skipped we simply mark them as visited
#ifndef NDEBUG
const auto UNAGGREGATED = Dune::Amg::AggregatesMap<typename G::VertexDescriptor>::UNAGGREGATED;
#endif
const auto ISOLATED = Dune::Amg::AggregatesMap<typename G::VertexDescriptor>::ISOLATED;
for(const auto& vertex: fineGraph ) {
assert(aggregates[vertex] != UNAGGREGATED);
put(visitedMap, vertex, aggregates[vertex]==ISOLATED);
}
Dune::Amg::SparsityBuilder<M> sparsityBuilder(coarseMatrix);
Dune::Amg::ConnectivityConstructor<G,Dune::Amg::SequentialInformation>
::examine(fineGraph, visitedMap, pinfo, aggregates, sparsityBuilder);
}
} // end namespace Detail
/**
* @brief A LevelTransferPolicy that uses aggregation to construct the coarse level system.
* @tparam Operator The type of the fine level operator.
* @tparam Criterion The criterion that describes the aggregation procedure.
* @tparam Communication The class that describes the communication pattern.
*/
template<class Operator, class Criterion, class Communication, std::size_t COMPONENT_INDEX, std::size_t VARIABLE_INDEX>
class OneComponentAggregationLevelTransferPolicy
: public Dune::Amg::LevelTransferPolicyCpr<Operator, typename Detail::ScalarType<Operator>::value>
{
typedef Dune::Amg::AggregatesMap<typename Operator::matrix_type::size_type> AggregatesMap;
public:
using CoarseOperator = typename Detail::ScalarType<Operator>::value;
typedef Dune::Amg::LevelTransferPolicy<Operator,CoarseOperator> FatherType;
typedef Communication ParallelInformation;
public:
OneComponentAggregationLevelTransferPolicy(const Criterion& crit, const Communication& comm,
bool cpr_pressure_aggregation)
: criterion_(crit), communication_(&const_cast<Communication&>(comm)),
cpr_pressure_aggregation_(cpr_pressure_aggregation)
{}
void createCoarseLevelSystem(const Operator& fineOperator)
{
prolongDamp_ = 1;
if ( cpr_pressure_aggregation_ )
{
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
typedef Dune::Amg::PropertiesGraphCreator<Operator,Communication> GraphCreator;
#else
typedef Dune::Amg::PropertiesGraphCreator<Operator> GraphCreator;
#endif
typedef typename GraphCreator::PropertiesGraph PropertiesGraph;
typedef typename GraphCreator::GraphTuple GraphTuple;
typedef typename PropertiesGraph::VertexDescriptor Vertex;
std::vector<bool> excluded(fineOperator.getmat().N(), false);
using OverlapFlags = Dune::NegateSet<typename ParallelInformation::OwnerSet>;
GraphTuple graphs = GraphCreator::create(fineOperator, excluded,
*communication_, OverlapFlags());
aggregatesMap_.reset(new AggregatesMap(std::get<1>(graphs)->maxVertex()+1));
int noAggregates, isoAggregates, oneAggregates, skippedAggregates;
using std::get;
std::tie(noAggregates, isoAggregates, oneAggregates, skippedAggregates) =
aggregatesMap_->buildAggregates(fineOperator.getmat(), *(get<1>(graphs)),
criterion_, true);
using CommunicationArgs = typename Dune::Amg::ConstructionTraits<Communication>::Arguments;
CommunicationArgs commArgs(communication_->communicator(), communication_->getSolverCategory());
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
coarseLevelCommunication_ = Dune::Amg::ConstructionTraits<Communication>::construct(commArgs);
#else
coarseLevelCommunication_.reset(Dune::Amg::ConstructionTraits<Communication>::construct(commArgs));
#endif
using Iterator = typename std::vector<bool>::iterator;
using std::get;
auto visitedMap = get(Dune::Amg::VertexVisitedTag(), *(get<1>(graphs)));
communication_->buildGlobalLookup(fineOperator.getmat().N());
std::size_t aggregates =
Dune::Amg::IndicesCoarsener<ParallelInformation,OverlapFlags>
::coarsen(*communication_, *get<1>(graphs), visitedMap,
*aggregatesMap_, *coarseLevelCommunication_,
noAggregates);
GraphCreator::free(graphs);
coarseLevelCommunication_->buildGlobalLookup(aggregates);
Dune::Amg::AggregatesPublisher<Vertex,OverlapFlags,ParallelInformation>
::publish(*aggregatesMap_,
*communication_,
coarseLevelCommunication_->globalLookup());
std::vector<bool>& visited=excluded;
std::fill(visited.begin(), visited.end(), false);
Dune::IteratorPropertyMap<Iterator, Dune::IdentityMap>
visitedMap2(visited.begin(), Dune::IdentityMap());
using CoarseMatrix = typename CoarseOperator::matrix_type;
coarseLevelMatrix_.reset(new CoarseMatrix(aggregates, aggregates,
CoarseMatrix::row_wise));
Detail::buildCoarseSparseMatrix(*coarseLevelMatrix_, *get<0>(graphs), visitedMap2,
*communication_,
*aggregatesMap_,
OverlapFlags());
delete get<0>(graphs);
communication_->freeGlobalLookup();
if( static_cast<int>(this->coarseLevelMatrix_->N())
< criterion_.coarsenTarget())
{
coarseLevelCommunication_->freeGlobalLookup();
}
calculateCoarseEntriesWithAggregatesMap(fineOperator);
}
else
{
using CoarseMatrix = typename CoarseOperator::matrix_type;
const auto& fineLevelMatrix = fineOperator.getmat();
coarseLevelMatrix_.reset(new CoarseMatrix(fineLevelMatrix.N(), fineLevelMatrix.M(), CoarseMatrix::row_wise));
auto createIter = coarseLevelMatrix_->createbegin();
for ( const auto& row: fineLevelMatrix )
{
for ( auto col = row.begin(), cend = row.end(); col != cend; ++col)
{
createIter.insert(col.index());
}
++createIter;
}
auto coarseRow = coarseLevelMatrix_->begin();
for ( const auto& row: fineLevelMatrix )
{
auto coarseCol = coarseRow->begin();
for ( auto col = row.begin(), cend = row.end(); col != cend; ++col, ++coarseCol )
{
assert( col.index() == coarseCol.index() );
*coarseCol = (*col)[COMPONENT_INDEX][VARIABLE_INDEX];
}
++coarseRow;
}
coarseLevelCommunication_.reset(communication_, [](Communication*){});
}
this->lhs_.resize(this->coarseLevelMatrix_->M());
this->rhs_.resize(this->coarseLevelMatrix_->N());
using OperatorArgs = typename Dune::Amg::ConstructionTraits<CoarseOperator>::Arguments;
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
OperatorArgs oargs(coarseLevelMatrix_, *coarseLevelCommunication_);
this->operator_ = Dune::Amg::ConstructionTraits<CoarseOperator>::construct(oargs);
#else
OperatorArgs oargs(*coarseLevelMatrix_, *coarseLevelCommunication_);
this->operator_.reset(Dune::Amg::ConstructionTraits<CoarseOperator>::construct(oargs));
#endif
}
void calculateCoarseEntriesWithAggregatesMap(const Operator& fineOperator)
{
const auto& fineMatrix = fineOperator.getmat();
*coarseLevelMatrix_ = 0;
for(auto row = fineMatrix.begin(), rowEnd = fineMatrix.end();
row != rowEnd; ++row)
{
const auto& i = (*aggregatesMap_)[row.index()];
if(i != AggregatesMap::ISOLATED)
{
for(auto entry = row->begin(), entryEnd = row->end();
entry != entryEnd; ++entry)
{
const auto& j = (*aggregatesMap_)[entry.index()];
if ( j != AggregatesMap::ISOLATED )
{
(*coarseLevelMatrix_)[i][j] += (*entry)[COMPONENT_INDEX][VARIABLE_INDEX];
}
}
}
}
}
virtual void calculateCoarseEntries(const Operator& fineOperator)
{
const auto& fineMatrix = fineOperator.getmat();
*coarseLevelMatrix_ = 0;
for(auto row = fineMatrix.begin(), rowEnd = fineMatrix.end();
row != rowEnd; ++row)
{
const auto& i = row.index();
for(auto entry = row->begin(), entryEnd = row->end();
entry != entryEnd; ++entry)
{
const auto& j = entry.index();
(*coarseLevelMatrix_)[i][j] += (*entry)[COMPONENT_INDEX][VARIABLE_INDEX];
}
}
}
void moveToCoarseLevel(const typename FatherType::FineRangeType& fine)
{
// Set coarse vector to zero
this->rhs_=0;
if ( cpr_pressure_aggregation_ )
{
auto end = fine.end(), begin=fine.begin();
for(auto block=begin; block != end; ++block)
{
const auto& vertex = (*aggregatesMap_)[block-begin];
if(vertex != AggregatesMap::ISOLATED)
{
this->rhs_[vertex] += (*block)[COMPONENT_INDEX];
}
}
}
else
{
auto end = fine.end(), begin=fine.begin();
for(auto block=begin; block != end; ++block)
{
this->rhs_[block-begin] = (*block)[COMPONENT_INDEX];
}
}
this->lhs_=0;
}
void moveToFineLevel(typename FatherType::FineDomainType& fine)
{
if( cpr_pressure_aggregation_ )
{
this->lhs_ *= prolongDamp_;
auto end=fine.end(), begin=fine.begin();
for(auto block=begin; block != end; ++block)
{
const auto& vertex = (*aggregatesMap_)[block-begin];
if(vertex != AggregatesMap::ISOLATED)
(*block)[COMPONENT_INDEX] += this->lhs_[vertex];
}
communication_->copyOwnerToAll(fine,fine);
}
else
{
auto end=fine.end(), begin=fine.begin();
for(auto block=begin; block != end; ++block)
{
(*block)[COMPONENT_INDEX] = this->lhs_[block-begin];
}
}
}
OneComponentAggregationLevelTransferPolicy* clone() const
{
return new OneComponentAggregationLevelTransferPolicy(*this);
}
const Communication& getCoarseLevelCommunication() const
{
return *coarseLevelCommunication_;
}
private:
typename Operator::matrix_type::field_type prolongDamp_;
std::shared_ptr<AggregatesMap> aggregatesMap_;
Criterion criterion_;
Communication* communication_;
std::shared_ptr<Communication> coarseLevelCommunication_;
std::shared_ptr<typename CoarseOperator::matrix_type> coarseLevelMatrix_;
bool cpr_pressure_aggregation_;
};
/**
* \brief An algebraic twolevel or multigrid approach for solving blackoil (supports CPR with and without AMG)
*
* This preconditioner first decouples the component used for coarsening using a simple scaling
* approach (e.g. Scheichl, Masson 2013,\see scaleMatrixDRS). Then it constructs the
* coarse level system. The coupling is defined by the weights corresponding to the element located at
* (COMPONENT_INDEX, VARIABLE_INDEX) in the block matrix. Then the coarse level system is constructed
* either by extracting these elements, or by applying aggregation to them directly. This coarse level
* can be solved either by AMG or by ILU. The preconditioner is configured using CPRParameter.
* \tparam O The type of the operator (encapsulating a BCRSMatrix).
* \tparam S The type of the smoother.
* \tparam C The type of coarsening criterion to use.
* \tparam P The type of the class describing the parallelization.
* \tparam COMPONENT_INDEX The index of the component to use for coarsening (usually water).
* \tparam VARIABLE_INDEX The index of the variable to use for coarsening (usually pressure).
*/
template<typename O, typename S, typename C,
typename P, std::size_t COMPONENT_INDEX, std::size_t VARIABLE_INDEX>
class BlackoilAmg
: public Dune::Preconditioner<typename O::domain_type, typename O::range_type>
{
public:
/** \brief The type of the operator (encapsulating a BCRSMatrix). */
using Operator = O;
/** \brief The type of coarsening criterion to use. */
using Criterion = C;
/** \brief The type of the class describing the parallelization. */
using Communication = P;
/** \brief The type of the smoother. */
using Smoother = S;
/** \brief The type of the smoother arguments for construction. */
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
protected:
using Matrix = typename Operator::matrix_type;
using CoarseOperator = typename Detail::ScalarType<Operator>::value;
using CoarseSmoother = typename Detail::ScalarType<Smoother>::value;
using FineCriterion =
typename Detail::OneComponentCriterionType<Criterion, COMPONENT_INDEX, VARIABLE_INDEX>::value;
using CoarseCriterion = typename Detail::ScalarType<Criterion>::value;
using LevelTransferPolicy =
OneComponentAggregationLevelTransferPolicy<Operator,
FineCriterion,
Communication,
COMPONENT_INDEX,
VARIABLE_INDEX>;
using CoarseSolverPolicy =
Detail::OneStepAMGCoarseSolverPolicy<CoarseOperator,
CoarseSmoother,
CoarseCriterion,
LevelTransferPolicy>;
using TwoLevelMethod =
Dune::Amg::TwoLevelMethodCpr<Operator,
CoarseSolverPolicy,
Smoother>;
public:
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::SolverCategory::Category category() const override
{
return std::is_same<Communication, Dune::Amg::SequentialInformation>::value ?
Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping;
}
#else
// define the category
enum {
//! \brief The category the precondtioner is part of.
category = Operator::category
};
#endif
/**
* \brief Constructor.
* \param param The parameters used for configuring the solver.
* \param fineOperator The operator of the fine level.
* \param criterion The criterion describing the coarsening approach.
* \param smargs The arguments for constructing the smoother.
* \param comm The information about the parallelization.
*/
BlackoilAmg(const CPRParameter& param,
const typename TwoLevelMethod::FineDomainType& weights,
const Operator& fineOperator, const Criterion& criterion,
const SmootherArgs& smargs, const Communication& comm)
: param_(param),
weights_(weights),
scaledMatrix_(Detail::scaleMatrixDRS(fineOperator, COMPONENT_INDEX, weights, param)),
scaledMatrixOperator_(Detail::createOperator(fineOperator, *scaledMatrix_, comm)),
smoother_( Detail::constructSmoother<Smoother>(*scaledMatrixOperator_, smargs, comm)),
levelTransferPolicy_(criterion, comm, param.cpr_pressure_aggregation_),
coarseSolverPolicy_(&param, smargs, criterion),
twoLevelMethod_(*scaledMatrixOperator_, smoother_,
levelTransferPolicy_, coarseSolverPolicy_, 0, 1)
{
}
void pre(typename TwoLevelMethod::FineDomainType& x,
typename TwoLevelMethod::FineRangeType& b) override
{
twoLevelMethod_.pre(x,b);
}
void post(typename TwoLevelMethod::FineDomainType& x) override
{
twoLevelMethod_.post(x);
}
void apply(typename TwoLevelMethod::FineDomainType& v,
const typename TwoLevelMethod::FineRangeType& d) override
{
auto scaledD = d;
Detail::scaleVectorDRS(scaledD, COMPONENT_INDEX, param_, weights_);
twoLevelMethod_.apply(v, scaledD);
}
private:
const CPRParameter& param_;
const typename TwoLevelMethod::FineDomainType& weights_;
std::unique_ptr<Matrix> scaledMatrix_;
std::unique_ptr<Operator> scaledMatrixOperator_;
std::shared_ptr<Smoother> smoother_;
LevelTransferPolicy levelTransferPolicy_;
CoarseSolverPolicy coarseSolverPolicy_;
TwoLevelMethod twoLevelMethod_;
};
namespace ISTLUtility
{
///
/// \brief A traits class for selecting the types of the preconditioner.
///
/// \tparam M The type of the matrix.
/// \tparam X The type of the domain of the linear problem.
/// \tparam Y The type of the range of the linear problem.
/// \tparam P The type of the parallel information.
/// \tparam C The type of the coarsening criterion to use.
/// \tparam index The pressure index.
////
template<class M, class X, class Y, class P, class C, std::size_t pressureEqnIndex, std::size_t pressureVarIndex>
struct BlackoilAmgSelector
{
using Criterion = C;
using Selector = CPRSelector<M,X,Y,P>;
using ParallelInformation = typename Selector::ParallelInformation;
using Operator = typename Selector::Operator;
using Smoother = typename Selector::EllipticPreconditioner;
using AMG = BlackoilAmg<Operator, Smoother, Criterion, ParallelInformation, pressureEqnIndex, pressureVarIndex>;
};
} // end namespace ISTLUtility
} // end namespace Opm
#endif