Files
opm-simulators/opm/simulators/linalg/matrixblock.hh
Markus Blatt 7fb622bba6 Fixes usage of firstmatrixelement with DUNE 2.8
The function name is now CamelCase and the old
naming scheme is deprecated. Hence we use the new naming
for 2.8
There was also a compilation problem due to header inclusion
order for that function. The compiler did not find our version
the correct version. With this change compilation succeeds again.
2021-08-26 16:26:30 +02:00

307 lines
9.1 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef EWOMS_MATRIX_BLOCK_HH
#define EWOMS_MATRIX_BLOCK_HH
#include <dune/istl/scalarproducts.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/superlu.hh>
#include <dune/istl/umfpack.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/typetraits.hh>
namespace Opm {
namespace MatrixBlockHelp {
template <typename K, int m, int n>
static inline void invertMatrix(Dune::FieldMatrix<K, m, n>& matrix)
{ matrix.invert(); }
template <typename K>
static inline void invertMatrix(Dune::FieldMatrix<K, 1, 1>& matrix)
{
matrix[0][0] = 1.0/matrix[0][0];
}
template <typename K>
static inline void invertMatrix(Dune::FieldMatrix<K, 2, 2>& matrix)
{
Dune::FieldMatrix<K, 2, 2> tmp(matrix);
Dune::FMatrixHelp::invertMatrix(tmp, matrix);
}
template <typename K>
static inline void invertMatrix(Dune::FieldMatrix<K, 3, 3>& matrix)
{
Dune::FieldMatrix<K, 3, 3> tmp(matrix);
Dune::FMatrixHelp::invertMatrix(tmp, matrix);
}
template <typename K>
static inline void invertMatrix(Dune::FieldMatrix<K, 4, 4>& matrix)
{
Dune::FieldMatrix<K, 4, 4> tmp(matrix);
matrix[0][0] =
tmp[1][1]*tmp[2][2]*tmp[3][3] -
tmp[1][1]*tmp[2][3]*tmp[3][2] -
tmp[2][1]*tmp[1][2]*tmp[3][3] +
tmp[2][1]*tmp[1][3]*tmp[3][2] +
tmp[3][1]*tmp[1][2]*tmp[2][3] -
tmp[3][1]*tmp[1][3]*tmp[2][2];
matrix[1][0] =
-tmp[1][0]*tmp[2][2]*tmp[3][3] +
tmp[1][0]*tmp[2][3]*tmp[3][2] +
tmp[2][0]*tmp[1][2]*tmp[3][3] -
tmp[2][0]*tmp[1][3]*tmp[3][2] -
tmp[3][0]*tmp[1][2]*tmp[2][3] +
tmp[3][0]*tmp[1][3]*tmp[2][2];
matrix[2][0] =
tmp[1][0]*tmp[2][1]*tmp[3][3] -
tmp[1][0]*tmp[2][3]*tmp[3][1] -
tmp[2][0]*tmp[1][1]*tmp[3][3] +
tmp[2][0]*tmp[1][3]*tmp[3][1] +
tmp[3][0]*tmp[1][1]*tmp[2][3] -
tmp[3][0]*tmp[1][3]*tmp[2][1];
matrix[3][0] =
-tmp[1][0]*tmp[2][1]*tmp[3][2] +
tmp[1][0]*tmp[2][2]*tmp[3][1] +
tmp[2][0]*tmp[1][1]*tmp[3][2] -
tmp[2][0]*tmp[1][2]*tmp[3][1] -
tmp[3][0]*tmp[1][1]*tmp[2][2] +
tmp[3][0]*tmp[1][2]*tmp[2][1];
matrix[0][1] =
-tmp[0][1]*tmp[2][2]*tmp[3][3] +
tmp[0][1]*tmp[2][3]*tmp[3][2] +
tmp[2][1]*tmp[0][2]*tmp[3][3] -
tmp[2][1]*tmp[0][3]*tmp[3][2] -
tmp[3][1]*tmp[0][2]*tmp[2][3] +
tmp[3][1]*tmp[0][3]*tmp[2][2];
matrix[1][1] =
tmp[0][0]*tmp[2][2]*tmp[3][3] -
tmp[0][0]*tmp[2][3]*tmp[3][2] -
tmp[2][0]*tmp[0][2]*tmp[3][3] +
tmp[2][0]*tmp[0][3]*tmp[3][2] +
tmp[3][0]*tmp[0][2]*tmp[2][3] -
tmp[3][0]*tmp[0][3]*tmp[2][2];
matrix[2][1] =
-tmp[0][0]*tmp[2][1]*tmp[3][3] +
tmp[0][0]*tmp[2][3]*tmp[3][1] +
tmp[2][0]*tmp[0][1]*tmp[3][3] -
tmp[2][0]*tmp[0][3]*tmp[3][1] -
tmp[3][0]*tmp[0][1]*tmp[2][3] +
tmp[3][0]*tmp[0][3]*tmp[2][1];
matrix[3][1] =
tmp[0][0]*tmp[2][1]*tmp[3][2] -
tmp[0][0]*tmp[2][2]*tmp[3][1] -
tmp[2][0]*tmp[0][1]*tmp[3][2] +
tmp[2][0]*tmp[0][2]*tmp[3][1] +
tmp[3][0]*tmp[0][1]*tmp[2][2] -
tmp[3][0]*tmp[0][2]*tmp[2][1];
matrix[0][2] =
tmp[0][1]*tmp[1][2]*tmp[3][3] -
tmp[0][1]*tmp[1][3]*tmp[3][2] -
tmp[1][1]*tmp[0][2]*tmp[3][3] +
tmp[1][1]*tmp[0][3]*tmp[3][2] +
tmp[3][1]*tmp[0][2]*tmp[1][3] -
tmp[3][1]*tmp[0][3]*tmp[1][2];
matrix[1][2] =
-tmp[0][0] *tmp[1][2]*tmp[3][3] +
tmp[0][0]*tmp[1][3]*tmp[3][2] +
tmp[1][0]*tmp[0][2]*tmp[3][3] -
tmp[1][0]*tmp[0][3]*tmp[3][2] -
tmp[3][0]*tmp[0][2]*tmp[1][3] +
tmp[3][0]*tmp[0][3]*tmp[1][2];
matrix[2][2] =
tmp[0][0]*tmp[1][1]*tmp[3][3] -
tmp[0][0]*tmp[1][3]*tmp[3][1] -
tmp[1][0]*tmp[0][1]*tmp[3][3] +
tmp[1][0]*tmp[0][3]*tmp[3][1] +
tmp[3][0]*tmp[0][1]*tmp[1][3] -
tmp[3][0]*tmp[0][3]*tmp[1][1];
matrix[3][2] =
-tmp[0][0]*tmp[1][1]*tmp[3][2] +
tmp[0][0]*tmp[1][2]*tmp[3][1] +
tmp[1][0]*tmp[0][1]*tmp[3][2] -
tmp[1][0]*tmp[0][2]*tmp[3][1] -
tmp[3][0]*tmp[0][1]*tmp[1][2] +
tmp[3][0]*tmp[0][2]*tmp[1][1];
matrix[0][3] =
-tmp[0][1]*tmp[1][2]*tmp[2][3] +
tmp[0][1]*tmp[1][3]*tmp[2][2] +
tmp[1][1]*tmp[0][2]*tmp[2][3] -
tmp[1][1]*tmp[0][3]*tmp[2][2] -
tmp[2][1]*tmp[0][2]*tmp[1][3] +
tmp[2][1]*tmp[0][3]*tmp[1][2];
matrix[1][3] =
tmp[0][0]*tmp[1][2]*tmp[2][3] -
tmp[0][0]*tmp[1][3]*tmp[2][2] -
tmp[1][0]*tmp[0][2]*tmp[2][3] +
tmp[1][0]*tmp[0][3]*tmp[2][2] +
tmp[2][0]*tmp[0][2]*tmp[1][3] -
tmp[2][0]*tmp[0][3]*tmp[1][2];
matrix[2][3] =
-tmp[0][0]*tmp[1][1]*tmp[2][3] +
tmp[0][0]*tmp[1][3]*tmp[2][1] +
tmp[1][0]*tmp[0][1]*tmp[2][3] -
tmp[1][0]*tmp[0][3]*tmp[2][1] -
tmp[2][0]*tmp[0][1]*tmp[1][3] +
tmp[2][0]*tmp[0][3]*tmp[1][1];
matrix[3][3] =
tmp[0][0]*tmp[1][1]*tmp[2][2] -
tmp[0][0]*tmp[1][2]*tmp[2][1] -
tmp[1][0]*tmp[0][1]*tmp[2][2] +
tmp[1][0]*tmp[0][2]*tmp[2][1] +
tmp[2][0]*tmp[0][1]*tmp[1][2] -
tmp[2][0]*tmp[0][2]*tmp[1][1];
K det =
tmp[0][0]*matrix[0][0] +
tmp[0][1]*matrix[1][0] +
tmp[0][2]*matrix[2][0] +
tmp[0][3]*matrix[3][0];
// return identity for singular or nearly singular matrices.
if (std::abs(det) < 1e-40)
matrix = std::numeric_limits<K>::quiet_NaN();
else
matrix *= 1.0/det;
}
} // namespace MatrixBlockHelp
template <class Scalar, int n, int m>
class MatrixBlock : public Dune::FieldMatrix<Scalar, n, m>
{
public:
using BaseType = Dune::FieldMatrix<Scalar, n, m> ;
using BaseType::operator= ;
using BaseType::rows;
using BaseType::cols;
MatrixBlock()
: BaseType(Scalar(0.0))
{}
explicit MatrixBlock(const Scalar value)
: BaseType(value)
{}
void invert()
{ Opm::MatrixBlockHelp::invertMatrix(asBase()); }
const BaseType& asBase() const
{ return static_cast<const BaseType&>(*this); }
BaseType& asBase()
{ return static_cast<BaseType&>(*this); }
};
} // namespace Opm
namespace Dune {
template<class K, int n, int m>
void print_row(std::ostream& s, const Opm::MatrixBlock<K, n, m>& A,
typename FieldMatrix<K, n, m>::size_type I,
typename FieldMatrix<K, n, m>::size_type J,
typename FieldMatrix<K, n, m>::size_type therow,
int width,
int precision)
{ print_row(s, A.asBase(), I, J, therow, width, precision); }
template <typename Scalar, int n, int m>
struct MatrixDimension<Opm::MatrixBlock<Scalar, n, m> >
: public MatrixDimension<typename Opm::MatrixBlock<Scalar, n, m>::BaseType>
{ };
#if HAVE_UMFPACK
/// \brief UMFPack specialization for Opm::MatrixBlock to make AMG happy
///
/// Without this the empty default implementation would be used.
template <typename T, typename A, int n, int m>
class UMFPack<BCRSMatrix<Opm::MatrixBlock<T, n, m>, A> >
: public UMFPack<BCRSMatrix<FieldMatrix<T, n, m>, A> >
{
using Base = UMFPack<BCRSMatrix<FieldMatrix<T, n, m>, A> >;
using Matrix = BCRSMatrix<FieldMatrix<T, n, m>, A>;
public:
using RealMatrix = BCRSMatrix<Opm::MatrixBlock<T, n, m>, A>;
UMFPack(const RealMatrix& matrix, int verbose, bool)
: Base(reinterpret_cast<const Matrix&>(matrix), verbose)
{}
};
#endif
#if HAVE_SUPERLU
/// \brief SuperLU specialization for Opm::MatrixBlock to make AMG happy
///
/// Without this the empty default implementation would be used.
template <typename T, typename A, int n, int m>
class SuperLU<BCRSMatrix<Opm::MatrixBlock<T, n, m>, A> >
: public SuperLU<BCRSMatrix<FieldMatrix<T, n, m>, A> >
{
using Base = SuperLU<BCRSMatrix<FieldMatrix<T, n, m>, A> >;
using Matrix = BCRSMatrix<FieldMatrix<T, n, m>, A>;
public:
using RealMatrix = BCRSMatrix<Opm::MatrixBlock<T, n, m>, A>;
SuperLU(const RealMatrix& matrix, int verb, bool reuse=true)
: Base(reinterpret_cast<const Matrix&>(matrix), verb, reuse)
{}
};
#endif
template<typename T, int n, int m>
struct IsNumber<Opm::MatrixBlock<T, n, m>>
: public IsNumber<Dune::FieldMatrix<T,n,m>>
{};
} // end namespace Dune
#endif