mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-28 02:00:59 -06:00
251 lines
8.5 KiB
C++
251 lines
8.5 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2015 NTNU
|
|
Copyright 2015 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_NEWTONSOLVER_IMPL_HEADER_INCLUDED
|
|
#define OPM_NEWTONSOLVER_IMPL_HEADER_INCLUDED
|
|
|
|
#include <opm/autodiff/NewtonSolver.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
template <class PhysicalModel>
|
|
NewtonSolver<PhysicalModel>::NewtonSolver(const SolverParameters& param,
|
|
std::unique_ptr<PhysicalModel> model)
|
|
: param_(param),
|
|
model_(std::move(model)),
|
|
newtonIterations_(0),
|
|
linearIterations_(0)
|
|
{
|
|
}
|
|
|
|
template <class PhysicalModel>
|
|
unsigned int NewtonSolver<PhysicalModel>::newtonIterations () const
|
|
{
|
|
return newtonIterations_;
|
|
}
|
|
|
|
template <class PhysicalModel>
|
|
unsigned int NewtonSolver<PhysicalModel>::linearIterations () const
|
|
{
|
|
return linearIterations_;
|
|
}
|
|
|
|
|
|
template <class PhysicalModel>
|
|
int
|
|
NewtonSolver<PhysicalModel>::
|
|
step(const double dt,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
// Do model-specific once-per-step calculations.
|
|
model_->prepareStep(dt, reservoir_state, well_state);
|
|
|
|
// For each iteration we store in a vector the norms of the residual of
|
|
// the mass balance for each active phase, the well flux and the well equations.
|
|
std::vector<std::vector<double>> residual_norms_history;
|
|
|
|
// Assemble residual and Jacobian, store residual norms.
|
|
model_->assemble(reservoir_state, well_state, true);
|
|
residual_norms_history.push_back(model_->computeResidualNorms());
|
|
|
|
// Set up for main Newton loop.
|
|
double omega = 1.0;
|
|
int iteration = 0;
|
|
bool converged = model_->getConvergence(dt, iteration);
|
|
const int sizeNonLinear = model_->sizeNonLinear();
|
|
V dxOld = V::Zero(sizeNonLinear);
|
|
bool isOscillate = false;
|
|
bool isStagnate = false;
|
|
const enum RelaxType relaxtype = relaxType();
|
|
int linIters = 0;
|
|
|
|
// ---------- Main Newton loop ----------
|
|
while ( (!converged && (iteration < maxIter())) || (minIter() > iteration)) {
|
|
// Compute the Newton update to the primary variables.
|
|
V dx = model_->solveJacobianSystem();
|
|
|
|
// Store number of linear iterations used.
|
|
linIters += model_->linearIterationsLastSolve();
|
|
|
|
// Stabilize the Newton update.
|
|
detectNewtonOscillations(residual_norms_history, iteration, relaxRelTol(), isOscillate, isStagnate);
|
|
if (isOscillate) {
|
|
omega -= relaxIncrement();
|
|
omega = std::max(omega, relaxMax());
|
|
if (model_->terminalOutputEnabled()) {
|
|
std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl;
|
|
}
|
|
}
|
|
stabilizeNewton(dx, dxOld, omega, relaxtype);
|
|
|
|
// Apply the update, the model may apply model-dependent
|
|
// limitations and chopping of the update.
|
|
model_->updateState(dx, reservoir_state, well_state);
|
|
|
|
// Assemble residual and Jacobian, store residual norms.
|
|
model_->assemble(reservoir_state, well_state, false);
|
|
residual_norms_history.push_back(model_->computeResidualNorms());
|
|
|
|
// increase iteration counter
|
|
++iteration;
|
|
|
|
converged = model_->getConvergence(dt, iteration);
|
|
}
|
|
|
|
if (!converged) {
|
|
if (model_->terminalOutputEnabled()) {
|
|
std::cerr << "WARNING: Failed to compute converged solution in " << iteration << " iterations." << std::endl;
|
|
}
|
|
return -1; // -1 indicates that the solver has to be restarted
|
|
}
|
|
|
|
linearIterations_ += linIters;
|
|
newtonIterations_ += iteration;
|
|
linearIterationsLast_ = linIters;
|
|
newtonIterationsLast_ = iteration;
|
|
|
|
// Do model-specific post-step actions.
|
|
model_->afterStep(dt, reservoir_state, well_state);
|
|
|
|
return linIters;
|
|
}
|
|
|
|
|
|
|
|
template <class PhysicalModel>
|
|
void NewtonSolver<PhysicalModel>::SolverParameters::
|
|
reset()
|
|
{
|
|
// default values for the solver parameters
|
|
relax_type_ = DAMPEN;
|
|
relax_max_ = 0.5;
|
|
relax_increment_ = 0.1;
|
|
relax_rel_tol_ = 0.2;
|
|
max_iter_ = 15;
|
|
min_iter_ = 1;
|
|
}
|
|
|
|
template <class PhysicalModel>
|
|
NewtonSolver<PhysicalModel>::SolverParameters::
|
|
SolverParameters()
|
|
{
|
|
// set default values
|
|
reset();
|
|
}
|
|
|
|
template <class PhysicalModel>
|
|
NewtonSolver<PhysicalModel>::SolverParameters::
|
|
SolverParameters( const parameter::ParameterGroup& param )
|
|
{
|
|
// set default values
|
|
reset();
|
|
|
|
// overload with given parameters
|
|
relax_max_ = param.getDefault("relax_max", relax_max_);
|
|
max_iter_ = param.getDefault("max_iter", max_iter_);
|
|
min_iter_ = param.getDefault("min_iter", min_iter_);
|
|
|
|
std::string relaxation_type = param.getDefault("relax_type", std::string("dampen"));
|
|
if (relaxation_type == "dampen") {
|
|
relax_type_ = DAMPEN;
|
|
} else if (relaxation_type == "sor") {
|
|
relax_type_ = SOR;
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type);
|
|
}
|
|
}
|
|
|
|
template <class PhysicalModel>
|
|
void
|
|
NewtonSolver<PhysicalModel>::detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
|
|
const int it, const double relaxRelTol_arg,
|
|
bool& oscillate, bool& stagnate) const
|
|
{
|
|
// The detection of oscillation in two primary variable results in the report of the detection
|
|
// of oscillation for the solver.
|
|
// Only the saturations are used for oscillation detection for the black oil model.
|
|
// Stagnate is not used for any treatment here.
|
|
|
|
if ( it < 2 ) {
|
|
oscillate = false;
|
|
stagnate = false;
|
|
return;
|
|
}
|
|
|
|
stagnate = true;
|
|
int oscillatePhase = 0;
|
|
const std::vector<double>& F0 = residual_history[it];
|
|
const std::vector<double>& F1 = residual_history[it - 1];
|
|
const std::vector<double>& F2 = residual_history[it - 2];
|
|
for (int p= 0; p < model_->numPhases(); ++p){
|
|
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
|
|
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
|
|
|
|
oscillatePhase += (d1 < relaxRelTol_arg) && (relaxRelTol_arg < d2);
|
|
|
|
// Process is 'stagnate' unless at least one phase
|
|
// exhibits significant residual change.
|
|
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
|
|
}
|
|
|
|
oscillate = (oscillatePhase > 1);
|
|
}
|
|
|
|
|
|
template <class PhysicalModel>
|
|
void
|
|
NewtonSolver<PhysicalModel>::stabilizeNewton(V& dx, V& dxOld, const double omega,
|
|
const RelaxType relax_type) const
|
|
{
|
|
// The dxOld is updated with dx.
|
|
// If omega is equal to 1., no relaxtion will be appiled.
|
|
|
|
const V tempDxOld = dxOld;
|
|
dxOld = dx;
|
|
|
|
switch (relax_type) {
|
|
case DAMPEN:
|
|
if (omega == 1.) {
|
|
return;
|
|
}
|
|
dx = dx*omega;
|
|
return;
|
|
case SOR:
|
|
if (omega == 1.) {
|
|
return;
|
|
}
|
|
dx = dx*omega + (1.-omega)*tempDxOld;
|
|
return;
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type.");
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
#endif // OPM_FULLYIMPLICITSOLVER_IMPL_HEADER_INCLUDED
|