mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-27 03:30:17 -06:00
1413 lines
66 KiB
C++
1413 lines
66 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Ewoms::EclOutputBlackOilModule
|
|
*/
|
|
#ifndef EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
|
|
#define EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
|
|
|
|
#include "eclwriter.hh"
|
|
|
|
#include <ewoms/models/blackoil/blackoilproperties.hh>
|
|
|
|
#include <ewoms/common/propertysystem.hh>
|
|
#include <ewoms/common/parametersystem.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <opm/parser/eclipse/Units/Units.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
|
|
#include <opm/output/data/Cells.hpp>
|
|
#include <opm/output/eclipse/EclipseIO.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <type_traits>
|
|
|
|
BEGIN_PROPERTIES
|
|
|
|
// create new type tag for the Ecl-output
|
|
NEW_TYPE_TAG(EclOutputBlackOil);
|
|
|
|
NEW_PROP_TAG(ForceDisableFluidInPlaceOutput);
|
|
|
|
SET_BOOL_PROP(EclOutputBlackOil, ForceDisableFluidInPlaceOutput, false);
|
|
|
|
END_PROPERTIES
|
|
|
|
namespace Ewoms {
|
|
|
|
// forward declaration
|
|
template <class TypeTag>
|
|
class EcfvDiscretization;
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
*
|
|
* \brief Output module for the results black oil model writing in
|
|
* ECL binary format.
|
|
*/
|
|
template <class TypeTag>
|
|
class EclOutputBlackOilModule
|
|
{
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Discretization) Discretization;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GridView::template Codim<0>::Entity Element;
|
|
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
|
|
|
|
typedef std::vector<Scalar> ScalarBuffer;
|
|
|
|
struct FipDataType
|
|
{
|
|
enum FipId
|
|
{
|
|
WaterInPlace = 0, //WIP
|
|
OilInPlace = 1, //OIP
|
|
GasInPlace = 2, //GIP
|
|
OilInPlaceInLiquidPhase = 3, //OIPL
|
|
OilInPlaceInGasPhase = 4, //OIPG
|
|
GasInPlaceInLiquidPhase = 5, //GIPL
|
|
GasInPlaceInGasPhase = 6, //GIPG
|
|
PoreVolume = 7, //PV
|
|
};
|
|
static const int numFipValues = PoreVolume + 1 ;
|
|
};
|
|
|
|
public:
|
|
template<class CollectDataToIORankType>
|
|
EclOutputBlackOilModule(const Simulator& simulator, const CollectDataToIORankType& collectToIORank)
|
|
: simulator_(simulator)
|
|
{
|
|
createLocalFipnum_();
|
|
|
|
// Summary output is for all steps
|
|
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
|
|
|
|
// Initialize block output
|
|
for (const auto& node: summaryConfig) {
|
|
if (node.type() == ECL_SMSPEC_BLOCK_VAR) {
|
|
if (collectToIORank.isGlobalIdxOnThisRank(node.num() - 1)) {
|
|
std::pair<std::string, int> key = std::make_pair(node.keyword(), node.num());
|
|
blockData_[key] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
forceDisableFipOutput_ = EWOMS_GET_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput);
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the Vtk output module.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput,
|
|
"Do not print fluid-in-place values after each report step even if requested by the deck.");
|
|
}
|
|
|
|
/*!
|
|
* \brief Allocate memory for the scalar fields we would like to
|
|
* write to ECL output files
|
|
*/
|
|
void allocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log)
|
|
{
|
|
if (!std::is_same<Discretization, Ewoms::EcfvDiscretization<TypeTag> >::value)
|
|
return;
|
|
|
|
// Summary output is for all steps
|
|
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
|
|
|
|
// Only output RESTART_AUXILIARY asked for by the user.
|
|
const Opm::RestartConfig& restartConfig = simulator_.vanguard().eclState().getRestartConfig();
|
|
std::map<std::string, int> rstKeywords = restartConfig.getRestartKeywords(reportStepNum);
|
|
for (auto& keyValue: rstKeywords) {
|
|
keyValue.second = restartConfig.getKeyword(keyValue.first, reportStepNum);
|
|
}
|
|
|
|
outputFipRestart_ = false;
|
|
computeFip_ = false;
|
|
|
|
// Fluid in place
|
|
for (int i = 0; i<FipDataType::numFipValues; i++) {
|
|
if (!substep || summaryConfig.require3DField(fipEnumToString_(i))) {
|
|
if (rstKeywords["FIP"] > 0) {
|
|
rstKeywords["FIP"] = 0;
|
|
outputFipRestart_ = true;
|
|
}
|
|
fip_[i].resize(bufferSize, 0.0);
|
|
computeFip_ = true;
|
|
}
|
|
else
|
|
fip_[i].clear();
|
|
}
|
|
if (!substep || summaryConfig.hasKeyword("FPR") || summaryConfig.hasKeyword("FPRP") || summaryConfig.hasKeyword("RPR")) {
|
|
fip_[FipDataType::PoreVolume].resize(bufferSize, 0.0);
|
|
hydrocarbonPoreVolume_.resize(bufferSize, 0.0);
|
|
pressureTimesPoreVolume_.resize(bufferSize, 0.0);
|
|
pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0);
|
|
}
|
|
else {
|
|
hydrocarbonPoreVolume_.clear();
|
|
pressureTimesPoreVolume_.clear();
|
|
pressureTimesHydrocarbonVolume_.clear();
|
|
}
|
|
|
|
// Well RFT data
|
|
if (!substep) {
|
|
for (const auto& well: simulator_.vanguard().schedule().getWells(reportStepNum)) {
|
|
|
|
// don't bother with wells not on this process
|
|
const auto& defunctWellNames = simulator_.vanguard().defunctWellNames();
|
|
if (defunctWellNames.find(well->name()) != defunctWellNames.end()) {
|
|
continue;
|
|
}
|
|
|
|
if (!(well->getRFTActive(reportStepNum)
|
|
|| well->getPLTActive(reportStepNum)))
|
|
continue;
|
|
|
|
for (const auto& connection: well->getConnections(reportStepNum)) {
|
|
const size_t i = size_t(connection.getI());
|
|
const size_t j = size_t(connection.getJ());
|
|
const size_t k = size_t(connection.getK());
|
|
const size_t index = simulator_.vanguard().eclState().getInputGrid().getGlobalIndex(i, j, k);
|
|
|
|
oilConnectionPressures_.emplace(std::make_pair(index, 0.0));
|
|
waterConnectionSaturations_.emplace(std::make_pair(index, 0.0));
|
|
gasConnectionSaturations_.emplace(std::make_pair(index, 0.0));
|
|
}
|
|
}
|
|
}
|
|
|
|
// always allocate memory for temperature
|
|
temperature_.resize(bufferSize, 0.0);
|
|
|
|
// Only provide restart on restart steps
|
|
if (!restartConfig.getWriteRestartFile(reportStepNum, log) || substep)
|
|
return;
|
|
|
|
// always output saturation of active phases
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
saturation_[phaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
// and oil pressure
|
|
oilPressure_.resize(bufferSize, 0.0);
|
|
|
|
if (FluidSystem::enableDissolvedGas())
|
|
rs_.resize(bufferSize, 0.0);
|
|
if (FluidSystem::enableVaporizedOil())
|
|
rv_.resize(bufferSize, 0.0);
|
|
|
|
if (GET_PROP_VALUE(TypeTag, EnableSolvent))
|
|
sSol_.resize(bufferSize, 0.0);
|
|
if (GET_PROP_VALUE(TypeTag, EnablePolymer))
|
|
cPolymer_.resize(bufferSize, 0.0);
|
|
|
|
if (simulator_.problem().vapparsActive())
|
|
soMax_.resize(bufferSize, 0.0);
|
|
|
|
if (simulator_.problem().materialLawManager()->enableHysteresis()) {
|
|
pcSwMdcOw_.resize(bufferSize, 0.0);
|
|
krnSwMdcOw_.resize(bufferSize, 0.0);
|
|
pcSwMdcGo_.resize(bufferSize, 0.0);
|
|
krnSwMdcGo_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (simulator_.vanguard().eclState().get3DProperties().hasDeckDoubleGridProperty("SWATINIT"))
|
|
ppcw_.resize(bufferSize, 0.0);
|
|
|
|
if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) {
|
|
rstKeywords["RSSAT"] = 0;
|
|
gasDissolutionFactor_.resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) {
|
|
rstKeywords["RVSAT"] = 0;
|
|
oilVaporizationFactor_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) {
|
|
rstKeywords["BW"] = 0;
|
|
invB_[waterPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) {
|
|
rstKeywords["BO"] = 0;
|
|
invB_[oilPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) {
|
|
rstKeywords["BG"] = 0;
|
|
invB_[gasPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (rstKeywords["DEN"] > 0) {
|
|
rstKeywords["DEN"] = 0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
density_[phaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
}
|
|
const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0);
|
|
const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0);
|
|
const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0);
|
|
rstKeywords["VISC"] = 0;
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) {
|
|
rstKeywords["VWAT"] = 0;
|
|
viscosity_[waterPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) {
|
|
rstKeywords["VOIL"] = 0;
|
|
viscosity_[oilPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) {
|
|
rstKeywords["VGAS"] = 0;
|
|
viscosity_[gasPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) {
|
|
rstKeywords["KRW"] = 0;
|
|
relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) {
|
|
rstKeywords["KRO"] = 0;
|
|
relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) {
|
|
rstKeywords["KRG"] = 0;
|
|
relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0);
|
|
}
|
|
|
|
if (rstKeywords["PBPD"] > 0) {
|
|
rstKeywords["PBPD"] = 0;
|
|
bubblePointPressure_.resize(bufferSize, 0.0);
|
|
dewPointPressure_.resize(bufferSize, 0.0);
|
|
}
|
|
|
|
// tracers
|
|
const int numTracers = simulator_.problem().tracerModel().numTracers();
|
|
if (numTracers > 0){
|
|
tracerConcentrations_.resize(numTracers);
|
|
for (int tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
|
|
{
|
|
tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
|
|
}
|
|
}
|
|
|
|
//Warn for any unhandled keyword
|
|
if (log) {
|
|
for (auto& keyValue: rstKeywords) {
|
|
if (keyValue.second > 0) {
|
|
std::string logstring = "Keyword '";
|
|
logstring.append(keyValue.first);
|
|
logstring.append("' is unhandled for output to file.");
|
|
Opm::OpmLog::warning("Unhandled output keyword", logstring);
|
|
}
|
|
}
|
|
}
|
|
|
|
failedCellsPb_.clear();
|
|
failedCellsPd_.clear();
|
|
|
|
// Not supported in flow legacy
|
|
if (false)
|
|
saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0);
|
|
if (false)
|
|
oilSaturationPressure_.resize(bufferSize, 0.0);
|
|
|
|
}
|
|
|
|
/*!
|
|
* \brief Modify the internal buffers according to the intensive quanties relevant
|
|
* for an element
|
|
*/
|
|
void processElement(const ElementContext& elemCtx)
|
|
{
|
|
if (!std::is_same<Discretization, Ewoms::EcfvDiscretization<TypeTag> >::value)
|
|
return;
|
|
|
|
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) {
|
|
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
typedef typename std::remove_const<typename std::remove_reference<decltype(fs)>::type>::type FluidState;
|
|
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
unsigned pvtRegionIdx = elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (saturation_[phaseIdx].size() == 0)
|
|
continue;
|
|
|
|
saturation_[phaseIdx][globalDofIdx] = Opm::getValue(fs.saturation(phaseIdx));
|
|
Opm::Valgrind::CheckDefined(saturation_[phaseIdx][globalDofIdx]);
|
|
}
|
|
|
|
if (oilPressure_.size() > 0) {
|
|
oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx));
|
|
Opm::Valgrind::CheckDefined(oilPressure_[globalDofIdx]);
|
|
}
|
|
|
|
if (enableEnergy) {
|
|
temperature_[globalDofIdx] = Opm::getValue(fs.temperature(oilPhaseIdx));
|
|
Opm::Valgrind::CheckDefined(temperature_[globalDofIdx]);
|
|
}
|
|
if (gasDissolutionFactor_.size() > 0) {
|
|
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
|
|
gasDissolutionFactor_[globalDofIdx] =
|
|
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx, SoMax);
|
|
Opm::Valgrind::CheckDefined(gasDissolutionFactor_[globalDofIdx]);
|
|
|
|
}
|
|
if (oilVaporizationFactor_.size() > 0) {
|
|
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
|
|
oilVaporizationFactor_[globalDofIdx] =
|
|
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx, SoMax);
|
|
Opm::Valgrind::CheckDefined(oilVaporizationFactor_[globalDofIdx]);
|
|
|
|
}
|
|
if (gasFormationVolumeFactor_.size() > 0) {
|
|
gasFormationVolumeFactor_[globalDofIdx] =
|
|
1.0/FluidSystem::template inverseFormationVolumeFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx);
|
|
Opm::Valgrind::CheckDefined(gasFormationVolumeFactor_[globalDofIdx]);
|
|
|
|
}
|
|
if (saturatedOilFormationVolumeFactor_.size() > 0) {
|
|
saturatedOilFormationVolumeFactor_[globalDofIdx] =
|
|
1.0/FluidSystem::template saturatedInverseFormationVolumeFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
|
|
Opm::Valgrind::CheckDefined(saturatedOilFormationVolumeFactor_[globalDofIdx]);
|
|
|
|
}
|
|
if (oilSaturationPressure_.size() > 0) {
|
|
oilSaturationPressure_[globalDofIdx] =
|
|
FluidSystem::template saturationPressure<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
|
|
Opm::Valgrind::CheckDefined(oilSaturationPressure_[globalDofIdx]);
|
|
|
|
}
|
|
|
|
if (rs_.size()) {
|
|
rs_[globalDofIdx] = Opm::getValue(fs.Rs());
|
|
Opm::Valgrind::CheckDefined(rs_[globalDofIdx]);
|
|
}
|
|
|
|
if (rv_.size()) {
|
|
rv_[globalDofIdx] = Opm::getValue(fs.Rv());
|
|
Opm::Valgrind::CheckDefined(rv_[globalDofIdx]);
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (invB_[phaseIdx].size() == 0)
|
|
continue;
|
|
|
|
invB_[phaseIdx][globalDofIdx] = Opm::getValue(fs.invB(phaseIdx));
|
|
Opm::Valgrind::CheckDefined(invB_[phaseIdx][globalDofIdx]);
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (density_[phaseIdx].size() == 0)
|
|
continue;
|
|
|
|
density_[phaseIdx][globalDofIdx] = Opm::getValue(fs.density(phaseIdx));
|
|
Opm::Valgrind::CheckDefined(density_[phaseIdx][globalDofIdx]);
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (viscosity_[phaseIdx].size() == 0)
|
|
continue;
|
|
|
|
viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(fs.viscosity(phaseIdx));
|
|
Opm::Valgrind::CheckDefined(viscosity_[phaseIdx][globalDofIdx]);
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (relativePermeability_[phaseIdx].size() == 0)
|
|
continue;
|
|
|
|
relativePermeability_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.relativePermeability(phaseIdx));
|
|
Opm::Valgrind::CheckDefined(relativePermeability_[phaseIdx][globalDofIdx]);
|
|
}
|
|
|
|
if (sSol_.size() > 0) {
|
|
sSol_[globalDofIdx] = intQuants.solventSaturation().value();
|
|
}
|
|
|
|
if (cPolymer_.size() > 0) {
|
|
cPolymer_[globalDofIdx] = intQuants.polymerConcentration().value();
|
|
}
|
|
|
|
if (bubblePointPressure_.size() > 0) {
|
|
try {
|
|
bubblePointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex()));
|
|
}
|
|
catch (const Opm::NumericalIssue&) {
|
|
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
|
|
failedCellsPb_.push_back(cartesianIdx);
|
|
}
|
|
}
|
|
if (dewPointPressure_.size() > 0) {
|
|
try {
|
|
dewPointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex()));
|
|
}
|
|
catch (const Opm::NumericalIssue&) {
|
|
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
|
|
failedCellsPd_.push_back(cartesianIdx);
|
|
}
|
|
}
|
|
|
|
if (soMax_.size() > 0)
|
|
soMax_[globalDofIdx] = elemCtx.simulator().problem().maxOilSaturation(globalDofIdx);
|
|
|
|
const auto& matLawManager = elemCtx.simulator().problem().materialLawManager();
|
|
if (matLawManager->enableHysteresis()) {
|
|
if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) {
|
|
matLawManager->oilWaterHysteresisParams(
|
|
pcSwMdcOw_[globalDofIdx],
|
|
krnSwMdcOw_[globalDofIdx],
|
|
globalDofIdx);
|
|
}
|
|
if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) {
|
|
matLawManager->gasOilHysteresisParams(
|
|
pcSwMdcGo_[globalDofIdx],
|
|
krnSwMdcGo_[globalDofIdx],
|
|
globalDofIdx);
|
|
}
|
|
}
|
|
|
|
|
|
if (ppcw_.size() > 0)
|
|
ppcw_[globalDofIdx] = matLawManager->oilWaterScaledEpsInfoDrainage(globalDofIdx).maxPcow;
|
|
|
|
// hack to make the intial output of rs and rv Ecl compatible.
|
|
// For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step
|
|
// where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite
|
|
// rs and rv with the values computed in the initially.
|
|
// Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values.
|
|
// This can be removed when ebos has 100% controll over output
|
|
if (elemCtx.simulator().episodeIndex() < 0 && FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
|
|
|
|
const auto& fsInitial = elemCtx.simulator().problem().initialFluidState(globalDofIdx);
|
|
|
|
// use initial rs and rv values
|
|
if (rv_.size() > 0)
|
|
rv_[globalDofIdx] = fsInitial.Rv();
|
|
|
|
if (rs_.size() > 0)
|
|
rs_[globalDofIdx] = fsInitial.Rs();
|
|
|
|
// re-compute the volume factors, viscosities and densities if asked for
|
|
if (density_[oilPhaseIdx].size() > 0)
|
|
density_[oilPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
|
|
oilPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
if (density_[gasPhaseIdx].size() > 0)
|
|
density_[gasPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
|
|
gasPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
|
|
if (invB_[oilPhaseIdx].size() > 0)
|
|
invB_[oilPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
|
|
oilPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
if (invB_[gasPhaseIdx].size() > 0)
|
|
invB_[gasPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
|
|
gasPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
if (viscosity_[oilPhaseIdx].size() > 0)
|
|
viscosity_[oilPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
|
|
oilPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
if (viscosity_[gasPhaseIdx].size() > 0)
|
|
viscosity_[gasPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
|
|
gasPhaseIdx,
|
|
intQuants.pvtRegionIndex());
|
|
}
|
|
|
|
// Add fluid in Place values
|
|
updateFluidInPlace_(elemCtx, dofIdx);
|
|
|
|
// Adding block data
|
|
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
|
|
for (auto& val: blockData_) {
|
|
const auto& key = val.first;
|
|
int cartesianIdxBlock = key.second - 1;
|
|
if (cartesianIdx == cartesianIdxBlock) {
|
|
if (key.first == "BWSAT")
|
|
val.second = Opm::getValue(fs.saturation(waterPhaseIdx));
|
|
else if (key.first == "BGSAT")
|
|
val.second = Opm::getValue(fs.saturation(gasPhaseIdx));
|
|
else if (key.first == "BPR")
|
|
val.second = Opm::getValue(fs.pressure(oilPhaseIdx));
|
|
else {
|
|
std::string logstring = "Keyword '";
|
|
logstring.append(key.first);
|
|
logstring.append("' is unhandled for output to file.");
|
|
Opm::OpmLog::warning("Unhandled output keyword", logstring);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adding Well RFT data
|
|
if (oilConnectionPressures_.count(cartesianIdx) > 0) {
|
|
oilConnectionPressures_[cartesianIdx] = Opm::getValue(fs.pressure(oilPhaseIdx));
|
|
}
|
|
if (waterConnectionSaturations_.count(cartesianIdx) > 0) {
|
|
waterConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(waterPhaseIdx));
|
|
}
|
|
if (gasConnectionSaturations_.count(cartesianIdx) > 0) {
|
|
gasConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(gasPhaseIdx));
|
|
}
|
|
|
|
// tracers
|
|
const auto& tracerModel = simulator_.problem().tracerModel();
|
|
if (tracerConcentrations_.size()>0) {
|
|
for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); tracerIdx++){
|
|
if (tracerConcentrations_[tracerIdx].size() == 0)
|
|
continue;
|
|
|
|
tracerConcentrations_[tracerIdx][globalDofIdx] = tracerModel.tracerConcentration(tracerIdx, globalDofIdx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void outputErrorLog()
|
|
{
|
|
const size_t maxNumCellsFaillog = 20;
|
|
|
|
int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size();
|
|
std::vector<int> displPb, displPd, recvLenPb, recvLenPd;
|
|
const auto& comm = simulator_.gridView().comm();
|
|
|
|
if (isIORank_()) {
|
|
displPb.resize(comm.size()+1, 0);
|
|
displPd.resize(comm.size()+1, 0);
|
|
recvLenPb.resize(comm.size());
|
|
recvLenPd.resize(comm.size());
|
|
}
|
|
|
|
comm.gather(&pbSize, recvLenPb.data(), 1, 0);
|
|
comm.gather(&pdSize, recvLenPd.data(), 1, 0);
|
|
std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1);
|
|
std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1);
|
|
std::vector<int> globalFailedCellsPb, globalFailedCellsPd;
|
|
|
|
if (isIORank_()) {
|
|
globalFailedCellsPb.resize(displPb.back());
|
|
globalFailedCellsPd.resize(displPd.back());
|
|
}
|
|
|
|
comm.gatherv(failedCellsPb_.data(), static_cast<int>(failedCellsPb_.size()),
|
|
globalFailedCellsPb.data(), recvLenPb.data(),
|
|
displPb.data(), 0);
|
|
comm.gatherv(failedCellsPd_.data(), static_cast<int>(failedCellsPd_.size()),
|
|
globalFailedCellsPd.data(), recvLenPd.data(),
|
|
displPd.data(), 0);
|
|
std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end());
|
|
std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end());
|
|
|
|
if (globalFailedCellsPb.size() > 0) {
|
|
std::stringstream errlog;
|
|
errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells [";
|
|
errlog << globalFailedCellsPb[0];
|
|
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size());
|
|
for (size_t i = 1; i < maxElems; ++i) {
|
|
errlog << ", " << globalFailedCellsPb[i];
|
|
}
|
|
if (globalFailedCellsPb.size() > maxNumCellsFaillog) {
|
|
errlog << ", ...";
|
|
}
|
|
errlog << "]";
|
|
Opm::OpmLog::warning("Bubble point numerical problem", errlog.str());
|
|
}
|
|
if (globalFailedCellsPd.size() > 0) {
|
|
std::stringstream errlog;
|
|
errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells [";
|
|
errlog << globalFailedCellsPd[0];
|
|
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size());
|
|
for (size_t i = 1; i < maxElems; ++i) {
|
|
errlog << ", " << globalFailedCellsPd[i];
|
|
}
|
|
if (globalFailedCellsPd.size() > maxNumCellsFaillog) {
|
|
errlog << ", ...";
|
|
}
|
|
errlog << "]";
|
|
Opm::OpmLog::warning("Dew point numerical problem", errlog.str());
|
|
}
|
|
}
|
|
|
|
void addRftDataToWells(Opm::data::Wells& wellDatas, size_t reportStepNum)
|
|
{
|
|
for (const auto& well: simulator_.vanguard().schedule().getWells(reportStepNum)) {
|
|
|
|
// don't bother with wells not on this process
|
|
const auto& defunctWellNames = simulator_.vanguard().defunctWellNames();
|
|
if (defunctWellNames.find(well->name()) != defunctWellNames.end()) {
|
|
continue;
|
|
}
|
|
|
|
//add data infrastructure for shut wells
|
|
if (!wellDatas.count(well->name())) {
|
|
Opm::data::Well wellData;
|
|
|
|
if (!(well->getRFTActive(reportStepNum)
|
|
|| well->getPLTActive(reportStepNum)))
|
|
continue;
|
|
wellData.connections.resize(well->getConnections(reportStepNum).size());
|
|
size_t count = 0;
|
|
for (const auto& connection: well->getConnections(reportStepNum)) {
|
|
const size_t i = size_t(connection.getI());
|
|
const size_t j = size_t(connection.getJ());
|
|
const size_t k = size_t(connection.getK());
|
|
|
|
const size_t index = simulator_.vanguard().eclState().getInputGrid().getGlobalIndex(i, j, k);
|
|
auto& connectionData = wellData.connections[count];
|
|
connectionData.index = index;
|
|
count++;
|
|
}
|
|
wellDatas.emplace(std::make_pair(well->name(), wellData));
|
|
}
|
|
|
|
Opm::data::Well& wellData = wellDatas.at(well->name());
|
|
for (auto& connectionData: wellData.connections) {
|
|
const auto index = connectionData.index;
|
|
if (oilConnectionPressures_.count(index) > 0)
|
|
connectionData.cell_pressure = oilConnectionPressures_.at(index);
|
|
if (waterConnectionSaturations_.count(index) > 0)
|
|
connectionData.cell_saturation_water = waterConnectionSaturations_.at(index);
|
|
if (gasConnectionSaturations_.count(index) > 0)
|
|
connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index);
|
|
}
|
|
}
|
|
oilConnectionPressures_.clear();
|
|
waterConnectionSaturations_.clear();
|
|
gasConnectionSaturations_.clear();
|
|
}
|
|
|
|
/*!
|
|
* \brief Move all buffers to data::Solution.
|
|
*/
|
|
void assignToSolution(Opm::data::Solution& sol)
|
|
{
|
|
if (!std::is_same<Discretization, Ewoms::EcfvDiscretization<TypeTag>>::value)
|
|
return;
|
|
|
|
if (oilPressure_.size() > 0) {
|
|
sol.insert("PRESSURE", Opm::UnitSystem::measure::pressure, std::move(oilPressure_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
|
|
if (enableEnergy) {
|
|
sol.insert("TEMP", Opm::UnitSystem::measure::temperature, std::move(temperature_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && saturation_[waterPhaseIdx].size() > 0) {
|
|
sol.insert("SWAT", Opm::UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && saturation_[gasPhaseIdx].size() > 0) {
|
|
sol.insert("SGAS", Opm::UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
if (ppcw_.size() > 0) {
|
|
sol.insert ("PPCW", Opm::UnitSystem::measure::pressure, std::move(ppcw_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
|
|
if (gasDissolutionFactor_.size() > 0) {
|
|
sol.insert("RSSAT", Opm::UnitSystem::measure::gas_oil_ratio, std::move(gasDissolutionFactor_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
|
|
}
|
|
if (oilVaporizationFactor_.size() > 0) {
|
|
sol.insert("RVSAT", Opm::UnitSystem::measure::oil_gas_ratio, std::move(oilVaporizationFactor_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (rs_.size() > 0) {
|
|
sol.insert("RS", Opm::UnitSystem::measure::gas_oil_ratio, std::move(rs_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
|
|
}
|
|
if (rv_.size() > 0) {
|
|
sol.insert("RV", Opm::UnitSystem::measure::oil_gas_ratio, std::move(rv_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
if (invB_[waterPhaseIdx].size() > 0) {
|
|
sol.insert("1OVERBW", Opm::UnitSystem::measure::water_inverse_formation_volume_factor, std::move(invB_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (invB_[oilPhaseIdx].size() > 0) {
|
|
sol.insert("1OVERBO", Opm::UnitSystem::measure::oil_inverse_formation_volume_factor, std::move(invB_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (invB_[gasPhaseIdx].size() > 0) {
|
|
sol.insert("1OVERBG", Opm::UnitSystem::measure::gas_inverse_formation_volume_factor, std::move(invB_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (density_[waterPhaseIdx].size() > 0) {
|
|
sol.insert("WAT_DEN", Opm::UnitSystem::measure::density, std::move(density_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (density_[oilPhaseIdx].size() > 0) {
|
|
sol.insert("OIL_DEN", Opm::UnitSystem::measure::density, std::move(density_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (density_[gasPhaseIdx].size() > 0) {
|
|
sol.insert("GAS_DEN", Opm::UnitSystem::measure::density, std::move(density_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (viscosity_[waterPhaseIdx].size() > 0) {
|
|
sol.insert("WAT_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (viscosity_[oilPhaseIdx].size() > 0) {
|
|
sol.insert("OIL_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (viscosity_[gasPhaseIdx].size() > 0) {
|
|
sol.insert("GAS_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (relativePermeability_[waterPhaseIdx].size() > 0) {
|
|
sol.insert("WATKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (relativePermeability_[oilPhaseIdx].size() > 0) {
|
|
sol.insert("OILKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
if (relativePermeability_[gasPhaseIdx].size() > 0) {
|
|
sol.insert("GASKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
}
|
|
|
|
if (pcSwMdcOw_.size() > 0)
|
|
sol.insert ("PCSWM_OW", Opm::UnitSystem::measure::identity, std::move(pcSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (krnSwMdcOw_.size() > 0)
|
|
sol.insert ("KRNSW_OW", Opm::UnitSystem::measure::identity, std::move(krnSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (pcSwMdcGo_.size() > 0)
|
|
sol.insert ("PCSWM_GO", Opm::UnitSystem::measure::identity, std::move(pcSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (krnSwMdcGo_.size() > 0)
|
|
sol.insert ("KRNSW_GO", Opm::UnitSystem::measure::identity, std::move(krnSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (soMax_.size() > 0)
|
|
sol.insert ("SOMAX", Opm::UnitSystem::measure::identity, std::move(soMax_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (sSol_.size() > 0)
|
|
sol.insert ("SSOLVENT", Opm::UnitSystem::measure::identity, std::move(sSol_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (cPolymer_.size() > 0)
|
|
sol.insert ("POLYMER", Opm::UnitSystem::measure::identity, std::move(cPolymer_), Opm::data::TargetType::RESTART_SOLUTION);
|
|
|
|
if (dewPointPressure_.size() > 0)
|
|
sol.insert ("PDEW", Opm::UnitSystem::measure::pressure, std::move(dewPointPressure_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
|
|
if (bubblePointPressure_.size() > 0)
|
|
sol.insert ("PBUB", Opm::UnitSystem::measure::pressure, std::move(bubblePointPressure_), Opm::data::TargetType::RESTART_AUXILIARY);
|
|
|
|
// Fluid in place
|
|
for (int i = 0; i<FipDataType::numFipValues; i++) {
|
|
if (outputFipRestart_ && fip_[i].size() > 0) {
|
|
sol.insert(fipEnumToString_(i),
|
|
Opm::UnitSystem::measure::volume,
|
|
fip_[i],
|
|
Opm::data::TargetType::SUMMARY);
|
|
}
|
|
}
|
|
|
|
// tracers
|
|
const auto& tracerModel = simulator_.problem().tracerModel();
|
|
if (tracerConcentrations_.size()>0) {
|
|
for (int tracerIdx = 0; tracerIdx<tracerModel.numTracers(); tracerIdx++){
|
|
std::string tmp = tracerModel.tracerName(tracerIdx) + "F";
|
|
sol.insert (tmp, Opm::UnitSystem::measure::identity, std::move(tracerConcentrations_[tracerIdx]), Opm::data::TargetType::RESTART_SOLUTION);
|
|
}
|
|
}
|
|
}
|
|
|
|
// write Fluid In Place to output log
|
|
void outputFipLog(std::map<std::string, double>& miscSummaryData, std::map<std::string, std::vector<double>>& regionData, const bool substep)
|
|
{
|
|
const auto& comm = simulator_.gridView().comm();
|
|
size_t ntFip = *std::max_element(fipnum_.begin(), fipnum_.end());
|
|
ntFip = comm.max(ntFip);
|
|
|
|
// sum values over each region
|
|
ScalarBuffer regionFipValues[FipDataType::numFipValues];
|
|
for (int i = 0; i < FipDataType::numFipValues; i++) {
|
|
regionFipValues[i] = computeFipForRegions_(fip_[i], fipnum_, ntFip);
|
|
if (isIORank_() && origRegionValues_[i].empty())
|
|
origRegionValues_[i] = regionFipValues[i];
|
|
}
|
|
|
|
// sum all region values to compute the field total
|
|
std::vector<int> fieldNum(ntFip, 1);
|
|
ScalarBuffer fieldFipValues(FipDataType::numFipValues, 0.0);
|
|
bool comunicateSum = false; // the regionValues are already summed over all ranks.
|
|
for (int i = 0; i<FipDataType::numFipValues; i++) {
|
|
const ScalarBuffer& tmp = computeFipForRegions_(regionFipValues[i], fieldNum, 1, comunicateSum);
|
|
fieldFipValues[i] = tmp[0];
|
|
}
|
|
|
|
// compute the hydrocarbon averaged pressure over the regions.
|
|
ScalarBuffer regPressurePv = computeFipForRegions_(pressureTimesPoreVolume_, fipnum_, ntFip);
|
|
ScalarBuffer regPvHydrocarbon = computeFipForRegions_(hydrocarbonPoreVolume_, fipnum_, ntFip);
|
|
ScalarBuffer regPressurePvHydrocarbon = computeFipForRegions_(pressureTimesHydrocarbonVolume_, fipnum_, ntFip);
|
|
|
|
ScalarBuffer fieldPressurePv = computeFipForRegions_(regPressurePv, fieldNum, 1, comunicateSum);
|
|
ScalarBuffer fieldPvHydrocarbon = computeFipForRegions_(regPvHydrocarbon, fieldNum, 1, comunicateSum);
|
|
ScalarBuffer fieldPressurePvHydrocarbon = computeFipForRegions_(regPressurePvHydrocarbon, fieldNum, 1, comunicateSum);
|
|
|
|
// output on io rank
|
|
// the original Fip values are stored on the first step
|
|
// TODO: Store initial Fip in the init file and restore them
|
|
// and use them here.
|
|
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
|
|
if (isIORank_()) {
|
|
// Field summary output
|
|
for (int i = 0; i<FipDataType::numFipValues; i++) {
|
|
std::string key = "F" + fipEnumToString_(i);
|
|
if (summaryConfig.hasKeyword(key))
|
|
miscSummaryData[key] = fieldFipValues[i];
|
|
}
|
|
if (summaryConfig.hasKeyword("FOE") && !origTotalValues_.empty())
|
|
miscSummaryData["FOE"] = fieldFipValues[FipDataType::OilInPlace] / origTotalValues_[FipDataType::OilInPlace];
|
|
|
|
if (summaryConfig.hasKeyword("FPR"))
|
|
miscSummaryData["FPR"] = pressureAverage_(fieldPressurePvHydrocarbon[0], fieldPvHydrocarbon[0], fieldPressurePv[0], fieldFipValues[FipDataType::PoreVolume], true);
|
|
|
|
if (summaryConfig.hasKeyword("FPRP"))
|
|
miscSummaryData["FPR"] = pressureAverage_(fieldPressurePvHydrocarbon[0], fieldPvHydrocarbon[0], fieldPressurePv[0], fieldFipValues[FipDataType::PoreVolume], false);
|
|
|
|
// Region summary output
|
|
for (int i = 0; i<FipDataType::numFipValues; i++) {
|
|
std::string key = "R" + fipEnumToString_(i);
|
|
if (summaryConfig.hasKeyword(key))
|
|
regionData[key] = regionFipValues[i];
|
|
}
|
|
if (summaryConfig.hasKeyword("RPR"))
|
|
regionData["RPR"] = pressureAverage_(regPressurePvHydrocarbon, regPvHydrocarbon, regPressurePv, regionFipValues[FipDataType::PoreVolume], true);
|
|
|
|
if (summaryConfig.hasKeyword("RPRP"))
|
|
regionData["RPRP"] = pressureAverage_(regPressurePvHydrocarbon, regPvHydrocarbon, regPressurePv, regionFipValues[FipDataType::PoreVolume], false);
|
|
|
|
// Output to log
|
|
if (!substep) {
|
|
|
|
fipUnitConvert_(fieldFipValues);
|
|
if (origTotalValues_.empty())
|
|
origTotalValues_ = fieldFipValues;
|
|
|
|
Scalar fieldHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(fieldPressurePvHydrocarbon[0], fieldPvHydrocarbon[0], fieldPressurePv[0], fieldFipValues[FipDataType::PoreVolume], true);
|
|
pressureUnitConvert_(fieldHydroCarbonPoreVolumeAveragedPressure);
|
|
outputRegionFluidInPlace_(origTotalValues_, fieldFipValues, fieldHydroCarbonPoreVolumeAveragedPressure, 0);
|
|
for (size_t reg = 0; reg < ntFip; ++reg) {
|
|
ScalarBuffer tmpO(FipDataType::numFipValues, 0.0);
|
|
for (int i = 0; i<FipDataType::numFipValues; i++) {
|
|
tmpO[i] = origRegionValues_[i][reg];
|
|
}
|
|
fipUnitConvert_(tmpO);
|
|
ScalarBuffer tmp(FipDataType::numFipValues, 0.0);
|
|
for (int i = 0; i<FipDataType::numFipValues; i++) {
|
|
tmp[i] = regionFipValues[i][reg];
|
|
}
|
|
fipUnitConvert_(tmp);
|
|
Scalar regHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(regPressurePvHydrocarbon[reg], regPvHydrocarbon[reg], regPressurePv[reg], regionFipValues[FipDataType::PoreVolume][reg], true);
|
|
pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure);
|
|
outputRegionFluidInPlace_(tmpO, tmp, regHydroCarbonPoreVolumeAveragedPressure, reg + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void setRestart(const Opm::data::Solution& sol, unsigned elemIdx, unsigned globalDofIndex)
|
|
{
|
|
Scalar so = 1.0;
|
|
if (saturation_[waterPhaseIdx].size() > 0 && sol.has("SWAT")) {
|
|
saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex];
|
|
so -= sol.data("SWAT")[globalDofIndex];
|
|
}
|
|
if (saturation_[gasPhaseIdx].size() > 0 && sol.has("SGAS")) {
|
|
saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex];
|
|
so -= sol.data("SGAS")[globalDofIndex];
|
|
}
|
|
|
|
assert(saturation_[oilPhaseIdx].size() > 0);
|
|
saturation_[oilPhaseIdx][elemIdx] = so;
|
|
|
|
if (oilPressure_.size() > 0 && sol.has("PRESSURE"))
|
|
oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex];
|
|
if (enableEnergy && sol.has("TEMP"))
|
|
temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex];
|
|
if (rs_.size() > 0 && sol.has("RS"))
|
|
rs_[elemIdx] = sol.data("RS")[globalDofIndex];
|
|
if (rv_.size() > 0 && sol.has("RV"))
|
|
rv_[elemIdx] = sol.data("RV")[globalDofIndex];
|
|
if (sSol_.size() > 0) {
|
|
// keep the SSOL option for backward compatibility
|
|
// should be removed after 10.2018 release
|
|
if (sol.has("SSOL"))
|
|
sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex];
|
|
else if (sol.has("SSOLVENT"))
|
|
sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex];
|
|
}
|
|
if (cPolymer_.size() > 0 && sol.has("POLYMER"))
|
|
cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex];
|
|
if (soMax_.size() > 0 && sol.has("SOMAX"))
|
|
soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex];
|
|
if (pcSwMdcOw_.size() > 0 &&sol.has("PCSWM_OW"))
|
|
pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex];
|
|
if (krnSwMdcOw_.size() > 0 && sol.has("KRNSW_OW"))
|
|
krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex];
|
|
if (pcSwMdcGo_.size() > 0 && sol.has("PCSWM_GO"))
|
|
pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex];
|
|
if (krnSwMdcGo_.size() > 0 && sol.has("KRNSW_GO"))
|
|
krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex];
|
|
if (ppcw_.size() > 0 && sol.has("PPCW"))
|
|
ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex];
|
|
|
|
}
|
|
|
|
template <class FluidState>
|
|
void assignToFluidState(FluidState& fs, unsigned elemIdx) const
|
|
{
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
if (saturation_[phaseIdx].size() == 0)
|
|
continue;
|
|
|
|
fs.setSaturation(phaseIdx, saturation_[phaseIdx][elemIdx]);
|
|
}
|
|
|
|
if (oilPressure_.size() > 0) {
|
|
// this assumes that capillary pressures only depend on the phase saturations
|
|
// and possibly on temperature. (this is always the case for ECL problems.)
|
|
Dune::FieldVector< Scalar, numPhases > pc(0);
|
|
const MaterialLawParams& matParams = simulator_.problem().materialLawParams(elemIdx);
|
|
MaterialLaw::capillaryPressures(pc, matParams, fs);
|
|
Opm::Valgrind::CheckDefined(oilPressure_[elemIdx]);
|
|
Opm::Valgrind::CheckDefined(pc);
|
|
assert(FluidSystem::phaseIsActive(oilPhaseIdx));
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
fs.setPressure(phaseIdx, oilPressure_[elemIdx] + (pc[phaseIdx] - pc[oilPhaseIdx]));
|
|
}
|
|
}
|
|
|
|
if (enableEnergy)
|
|
fs.setTemperature(temperature_[elemIdx]);
|
|
if (rs_.size() > 0)
|
|
fs.setRs(rs_[elemIdx]);
|
|
if (rv_.size() > 0)
|
|
fs.setRv(rv_[elemIdx]);
|
|
}
|
|
|
|
void initHysteresisParams(Simulator& simulator, unsigned elemIdx) const {
|
|
|
|
if (soMax_.size() > 0)
|
|
simulator.problem().setMaxOilSaturation(elemIdx, soMax_[elemIdx]);
|
|
|
|
if (simulator.problem().materialLawManager()->enableHysteresis()) {
|
|
auto matLawManager = simulator.problem().materialLawManager();
|
|
|
|
if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) {
|
|
matLawManager->setOilWaterHysteresisParams(
|
|
pcSwMdcOw_[elemIdx],
|
|
krnSwMdcOw_[elemIdx],
|
|
elemIdx);
|
|
}
|
|
if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) {
|
|
matLawManager->setGasOilHysteresisParams(
|
|
pcSwMdcGo_[elemIdx],
|
|
krnSwMdcGo_[elemIdx],
|
|
elemIdx);
|
|
}
|
|
}
|
|
|
|
if (simulator_.vanguard().eclState().get3DProperties().hasDeckDoubleGridProperty("SWATINIT")) {
|
|
auto oilWaterScaledEpsInfoDrainage = simulator.problem().materialLawManager()->oilWaterScaledEpsInfoDrainagePointerReferenceHack(elemIdx);
|
|
oilWaterScaledEpsInfoDrainage->maxPcow = ppcw_[elemIdx];
|
|
}
|
|
|
|
|
|
}
|
|
|
|
Scalar getSolventSaturation(unsigned elemIdx) const {
|
|
if (sSol_.size() > 0)
|
|
return sSol_[elemIdx];
|
|
|
|
return 0;
|
|
}
|
|
|
|
Scalar getPolymerConcentration(unsigned elemIdx) const {
|
|
if (cPolymer_.size() > 0)
|
|
return cPolymer_[elemIdx];
|
|
|
|
return 0;
|
|
}
|
|
|
|
const std::map<std::pair<std::string, int>, double>& getBlockData() {
|
|
return blockData_;
|
|
}
|
|
|
|
private:
|
|
|
|
bool isIORank_() const
|
|
{
|
|
const auto& comm = simulator_.gridView().comm();
|
|
return comm.rank() == 0;
|
|
}
|
|
|
|
void updateFluidInPlace_(const ElementContext& elemCtx, unsigned dofIdx)
|
|
{
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
|
|
// Fluid in Place calculations
|
|
|
|
// calculate the pore volume of the current cell. Note that the porosity
|
|
// returned by the intensive quantities is defined as the ratio of pore
|
|
// space to total cell volume and includes all pressure dependent (->
|
|
// rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG,
|
|
// PORV, MINPV and friends). Also note that because of this, the porosity
|
|
// returned by the intensive quantities can be outside of the physical
|
|
// range [0, 1] in pathetic cases.
|
|
const double pv =
|
|
elemCtx.simulator().model().dofTotalVolume(globalDofIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
if (pressureTimesHydrocarbonVolume_.size() > 0 && pressureTimesPoreVolume_.size() > 0) {
|
|
assert(hydrocarbonPoreVolume_.size() == pressureTimesHydrocarbonVolume_.size());
|
|
assert(fip_[FipDataType::PoreVolume].size() == pressureTimesPoreVolume_.size());
|
|
|
|
fip_[FipDataType::PoreVolume][globalDofIdx] = pv;
|
|
|
|
Scalar hydrocarbon = 0.0;
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx))
|
|
hydrocarbon += Opm::getValue(fs.saturation(oilPhaseIdx));
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx))
|
|
hydrocarbon += Opm::getValue(fs.saturation(gasPhaseIdx));
|
|
|
|
hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon;
|
|
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
|
pressureTimesPoreVolume_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)) * pv;
|
|
pressureTimesHydrocarbonVolume_[globalDofIdx] = pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon;
|
|
}
|
|
}
|
|
|
|
if (computeFip_) {
|
|
Scalar fip[FluidSystem::numPhases];
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
fip[phaseIdx] = 0.0;
|
|
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
const double b = Opm::getValue(fs.invB(phaseIdx));
|
|
const double s = Opm::getValue(fs.saturation(phaseIdx));
|
|
fip[phaseIdx] = b * s * pv;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlace].size() > 0)
|
|
fip_[FipDataType::OilInPlace][globalDofIdx] = fip[oilPhaseIdx];
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlace].size() > 0)
|
|
fip_[FipDataType::GasInPlace][globalDofIdx] = fip[gasPhaseIdx];
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx) && fip_[FipDataType::WaterInPlace].size() > 0)
|
|
fip_[FipDataType::WaterInPlace][globalDofIdx] = fip[waterPhaseIdx];
|
|
|
|
// Store the pure oil and gas Fip
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlaceInLiquidPhase].size() > 0)
|
|
fip_[FipDataType::OilInPlaceInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx];
|
|
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlaceInGasPhase].size() > 0)
|
|
fip_[FipDataType::GasInPlaceInGasPhase][globalDofIdx] = fip[gasPhaseIdx];
|
|
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
|
|
// Gas dissolved in oil and vaporized oil
|
|
Scalar gasInPlaceLiquid = Opm::getValue(fs.Rs()) * fip[oilPhaseIdx];
|
|
Scalar oilInPlaceGas = Opm::getValue(fs.Rv()) * fip[gasPhaseIdx];
|
|
if (fip_[FipDataType::GasInPlaceInGasPhase].size() > 0)
|
|
fip_[FipDataType::GasInPlaceInLiquidPhase][globalDofIdx] = gasInPlaceLiquid;
|
|
if (fip_[FipDataType::OilInPlaceInGasPhase].size() > 0)
|
|
fip_[FipDataType::OilInPlaceInGasPhase][globalDofIdx] = oilInPlaceGas;
|
|
|
|
// Add dissolved gas and vaporized oil to total Fip
|
|
if (fip_[FipDataType::OilInPlace].size() > 0)
|
|
fip_[FipDataType::OilInPlace][globalDofIdx] += oilInPlaceGas;
|
|
if (fip_[FipDataType::GasInPlace].size() > 0)
|
|
fip_[FipDataType::GasInPlace][globalDofIdx] += gasInPlaceLiquid;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void createLocalFipnum_()
|
|
{
|
|
const std::vector<int>& fipnumGlobal = simulator_.vanguard().eclState().get3DProperties().getIntGridProperty("FIPNUM").getData();
|
|
// Get compressed cell fipnum.
|
|
const auto& gridView = simulator_.vanguard().gridView();
|
|
unsigned numElements = gridView.size(/*codim=*/0);
|
|
fipnum_.resize(numElements, 0.0);
|
|
if (!fipnumGlobal.empty()) {
|
|
ElementContext elemCtx(simulator_);
|
|
ElementIterator elemIt = gridView.template begin</*codim=*/0>();
|
|
const ElementIterator& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const Element& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue; // assign no fipnum regions to ghost elements
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
const unsigned elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
fipnum_[elemIdx] = fipnumGlobal[simulator_.vanguard().cartesianIndex(elemIdx)];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sum Fip values over regions.
|
|
ScalarBuffer computeFipForRegions_(const ScalarBuffer& fip, std::vector<int>& regionId, size_t maxNumberOfRegions, bool commSum = true)
|
|
{
|
|
ScalarBuffer totals(maxNumberOfRegions, 0.0);
|
|
|
|
if (fip.empty())
|
|
return totals;
|
|
|
|
assert(regionId.size() == fip.size());
|
|
for (size_t j = 0; j < regionId.size(); ++j) {
|
|
const int regionIdx = regionId[j] - 1;
|
|
// the cell is not attributed to any region. ignore it!
|
|
if (regionIdx < 0)
|
|
continue;
|
|
|
|
assert(regionIdx < static_cast<int>(maxNumberOfRegions));
|
|
totals[regionIdx] += fip[j];
|
|
}
|
|
if (commSum) {
|
|
const auto& comm = simulator_.gridView().comm();
|
|
for (size_t i = 0; i < maxNumberOfRegions; ++i)
|
|
totals[i] = comm.sum(totals[i]);
|
|
}
|
|
|
|
return totals;
|
|
}
|
|
|
|
ScalarBuffer pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon, const ScalarBuffer& pvHydrocarbon, const ScalarBuffer& pressurePv, const ScalarBuffer& pv, bool hydrocarbon)
|
|
{
|
|
size_t size = pressurePvHydrocarbon.size();
|
|
assert(pvHydrocarbon.size() == size);
|
|
assert(pressurePv.size() == size);
|
|
assert(pv.size() == size);
|
|
|
|
ScalarBuffer fraction(size, 0.0);
|
|
for (size_t i = 0; i < size; ++i) {
|
|
fraction[i] = pressureAverage_(pressurePvHydrocarbon[i], pvHydrocarbon[i], pressurePv[i], pv[i], hydrocarbon);
|
|
}
|
|
return fraction;
|
|
}
|
|
|
|
Scalar pressureAverage_(const Scalar& pressurePvHydrocarbon, const Scalar& pvHydrocarbon, const Scalar& pressurePv, const Scalar& pv, bool hydrocarbon)
|
|
{
|
|
if (pvHydrocarbon > 1e-10 && hydrocarbon)
|
|
return pressurePvHydrocarbon / pvHydrocarbon;
|
|
|
|
return pressurePv / pv;
|
|
}
|
|
|
|
void fipUnitConvert_(ScalarBuffer& fip)
|
|
{
|
|
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
|
|
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], Opm::unit::stb);
|
|
fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], Opm::unit::stb);
|
|
fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], Opm::unit::stb);
|
|
fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], Opm::unit::stb);
|
|
fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], 1000*Opm::unit::cubic(Opm::unit::feet));
|
|
fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], 1000*Opm::unit::cubic(Opm::unit::feet));
|
|
fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], 1000*Opm::unit::cubic(Opm::unit::feet));
|
|
fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], Opm::unit::stb);
|
|
}
|
|
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
|
|
Scalar scc = Opm::unit::cubic(Opm::prefix::centi * Opm::unit::meter); //standard cubic cm.
|
|
fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], scc);
|
|
fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], scc);
|
|
fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], scc);
|
|
fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], scc);
|
|
fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], scc);
|
|
fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], scc);
|
|
fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], scc);
|
|
fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], scc);
|
|
}
|
|
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
// nothing to do
|
|
}
|
|
else {
|
|
throw std::runtime_error("Unsupported unit type for fluid in place output.");
|
|
}
|
|
}
|
|
|
|
void pressureUnitConvert_(Scalar& pav)
|
|
{
|
|
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
|
|
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
pav = Opm::unit::convert::to(pav, Opm::unit::psia);
|
|
}
|
|
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
pav = Opm::unit::convert::to(pav, Opm::unit::barsa);
|
|
}
|
|
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
|
|
pav = Opm::unit::convert::to(pav, Opm::unit::atm);
|
|
|
|
}
|
|
else {
|
|
throw std::runtime_error("Unsupported unit type for fluid in place output.");
|
|
}
|
|
}
|
|
|
|
void outputRegionFluidInPlace_(const ScalarBuffer& oip, const ScalarBuffer& cip, const Scalar& pav, const int reg)
|
|
{
|
|
if (forceDisableFipOutput_)
|
|
return;
|
|
|
|
// don't output FIPNUM report if the region has no porv.
|
|
if (cip[FipDataType::PoreVolume] == 0)
|
|
return;
|
|
|
|
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
|
|
std::ostringstream ss;
|
|
if (!reg) {
|
|
ss << " ===================================================\n"
|
|
<< " : Field Totals :\n";
|
|
}
|
|
else {
|
|
ss << " ===================================================\n"
|
|
<< " : FIPNUM report region "
|
|
<< std::setw(2) << reg << " :\n";
|
|
}
|
|
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n"
|
|
<< std::fixed << std::setprecision(0)
|
|
<< " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RM3 :\n";
|
|
if (!reg) {
|
|
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
|
|
<< " : Porv volumes are taken at reference conditions :\n";
|
|
}
|
|
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
|
|
}
|
|
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n"
|
|
<< std::fixed << std::setprecision(0)
|
|
<< " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RB :\n";
|
|
if (!reg) {
|
|
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
|
|
<< " : Pore volumes are taken at reference conditions :\n";
|
|
}
|
|
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
|
|
}
|
|
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
|
|
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
|
|
<< ":Currently in place :" << std::setw(14) << cip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << cip[FipDataType::OilInPlace] << ":"
|
|
<< std::setw(13) << cip[FipDataType::WaterInPlace] << " :" << std::setw(14) << (cip[FipDataType::GasInPlaceInGasPhase]) << std::setw(14) << cip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::GasInPlace] << ":\n"
|
|
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
|
|
<< ":Originally in place :" << std::setw(14) << oip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::OilInPlace] << ":"
|
|
<< std::setw(13) << oip[FipDataType::WaterInPlace] << " :" << std::setw(14) << oip[FipDataType::GasInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::GasInPlace] << ":\n"
|
|
<< ":========================:==========================================:================:==========================================:\n";
|
|
Opm::OpmLog::note(ss.str());
|
|
}
|
|
|
|
std::string fipEnumToString_(int i)
|
|
{
|
|
typedef typename FipDataType::FipId FipId;
|
|
switch(static_cast<FipId>(i))
|
|
{
|
|
case FipDataType::WaterInPlace: return "WIP";
|
|
case FipDataType::OilInPlace: return "OIP";
|
|
case FipDataType::GasInPlace: return "GIP";
|
|
case FipDataType::OilInPlaceInLiquidPhase: return "OIPL";
|
|
case FipDataType::OilInPlaceInGasPhase: return "OIPG";
|
|
case FipDataType::GasInPlaceInLiquidPhase: return "GIPL";
|
|
case FipDataType::GasInPlaceInGasPhase: return "GIPG";
|
|
case FipDataType::PoreVolume: return "PV";
|
|
}
|
|
return "ERROR";
|
|
}
|
|
|
|
|
|
const Simulator& simulator_;
|
|
|
|
bool outputFipRestart_;
|
|
bool computeFip_;
|
|
bool forceDisableFipOutput_;
|
|
|
|
ScalarBuffer saturation_[numPhases];
|
|
ScalarBuffer oilPressure_;
|
|
ScalarBuffer temperature_;
|
|
ScalarBuffer gasDissolutionFactor_;
|
|
ScalarBuffer oilVaporizationFactor_;
|
|
ScalarBuffer gasFormationVolumeFactor_;
|
|
ScalarBuffer saturatedOilFormationVolumeFactor_;
|
|
ScalarBuffer oilSaturationPressure_;
|
|
ScalarBuffer rs_;
|
|
ScalarBuffer rv_;
|
|
ScalarBuffer invB_[numPhases];
|
|
ScalarBuffer density_[numPhases];
|
|
ScalarBuffer viscosity_[numPhases];
|
|
ScalarBuffer relativePermeability_[numPhases];
|
|
ScalarBuffer sSol_;
|
|
ScalarBuffer cPolymer_;
|
|
ScalarBuffer soMax_;
|
|
ScalarBuffer pcSwMdcOw_;
|
|
ScalarBuffer krnSwMdcOw_;
|
|
ScalarBuffer pcSwMdcGo_;
|
|
ScalarBuffer krnSwMdcGo_;
|
|
ScalarBuffer ppcw_;
|
|
ScalarBuffer bubblePointPressure_;
|
|
ScalarBuffer dewPointPressure_;
|
|
std::vector<int> failedCellsPb_;
|
|
std::vector<int> failedCellsPd_;
|
|
std::vector<int> fipnum_;
|
|
ScalarBuffer fip_[FipDataType::numFipValues];
|
|
ScalarBuffer origTotalValues_;
|
|
ScalarBuffer origRegionValues_[FipDataType::numFipValues];
|
|
ScalarBuffer hydrocarbonPoreVolume_;
|
|
ScalarBuffer pressureTimesPoreVolume_;
|
|
ScalarBuffer pressureTimesHydrocarbonVolume_;
|
|
std::map<std::pair<std::string, int>, double> blockData_;
|
|
std::map<size_t, Scalar> oilConnectionPressures_;
|
|
std::map<size_t, Scalar> waterConnectionSaturations_;
|
|
std::map<size_t, Scalar> gasConnectionSaturations_;
|
|
std::vector<ScalarBuffer> tracerConcentrations_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|