opm-simulators/opm/autodiff/NewtonIterationBlackoilCPR.cpp
Atgeirr Flø Rasmussen c60a080a73 Added some utility functions for the CPR preconditioner.
The new functions are:
    - eliminateVariable()
    - recoverVariable()
    - isDiagonal()
2014-05-13 14:58:13 +02:00

254 lines
9.9 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
namespace Opm
{
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
namespace {
/// Eliminate a variable via Schur complement.
/// \param[in] eqs set of equations with Jacobians
/// \param[in] n index of equation/variable to eliminate.
/// \return new set of equations, one smaller than eqs.
/// Note: this method requires the eliminated variable to have the same size
/// as the equation in the corresponding position (that also will be eliminated).
/// It also required the jacobian block n of equation n to be diagonal.
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n);
/// Recover that value of a variable previously eliminated.
/// \param[in] equation previously eliminated equation.
/// \param[in] partial_solution solution to the remainder system after elimination.
/// \param[in] n index of equation/variable that was eliminated.
/// \return solution to complete system.
V recoverVariable(const ADB& equation, const V& partial_solution, const int n);
/// Determine diagonality of a sparse matrix.
/// If there are off-diagonal elements in the sparse
/// structure, this function returns true if they are all
/// equal to zero.
bool isDiagonal(const M& matrix);
} // anonymous namespace
/// Construct a system solver.
/// \param[in] linsolver linear solver to use
NewtonIterationBlackoilCPR::NewtonIterationBlackoilCPR(const parameter::ParameterGroup& param)
{
parameter::ParameterGroup cpr_elliptic = param.getDefault("cpr_elliptic", param);
linsolver_elliptic_.reset(new LinearSolverFactory(cpr_elliptic));
parameter::ParameterGroup cpr_full = param.getDefault("cpr_full", param);
linsolver_full_.reset(new LinearSolverFactory(cpr_full));
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
NewtonIterationBlackoilCPR::SolutionVector
NewtonIterationBlackoilCPR::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
typedef LinearisedBlackoilResidual::ADB ADB;
const int np = residual.material_balance_eq.size();
ADB mass_res = residual.material_balance_eq[0];
for (int phase = 1; phase < np; ++phase) {
mass_res = vertcat(mass_res, residual.material_balance_eq[phase]);
}
const ADB well_res = vertcat(residual.well_flux_eq, residual.well_eq);
const ADB total_residual = collapseJacs(vertcat(mass_res, well_res));
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
SolutionVector dx(SolutionVector::Zero(total_residual.size()));
Opm::LinearSolverInterface::LinearSolverReport rep
= linsolver_full_->solve(matr.rows(), matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
total_residual.value().data(), dx.data());
if (!rep.converged) {
OPM_THROW(std::runtime_error,
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
"Linear solver convergence failure.");
}
return dx;
}
namespace
{
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
{
// Check that the variable index to eliminate is within bounds.
const int num_eq = eqs.size();
const int num_vars = eqs[0].derivative().size();
if (num_eq != num_vars) {
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
}
if (n >= num_eq) {
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
}
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
// This is applied to all 2x2 block submatrices.
// We require that D is diagonal.
const M& D = eqs[n].derivative()[n];
if (!isDiagonal(D)) {
// std::cout << "++++++++++++++++++++++++++++++++++++++++++++\n"
// << D
// << "++++++++++++++++++++++++++++++++++++++++++++\n" << std::endl;
OPM_THROW(std::logic_error, "Cannot do Schur complement with respect to non-diagonal block.");
}
V diag = D.diagonal();
Eigen::DiagonalMatrix<double, Eigen::Dynamic> invD = (1.0 / diag).matrix().asDiagonal();
std::vector<V> vals(num_eq); // Number n will remain empty.
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
for (int eq = 0; eq < num_eq; ++eq) {
if (eq == n) {
continue;
}
jacs[eq].reserve(num_eq - 1);
const M& B = eqs[eq].derivative()[n];
for (int var = 0; var < num_eq; ++var) {
if (var == n) {
continue;
}
// Create new jacobians.
M schur_jac = eqs[eq].derivative()[var] - B * (invD * eqs[n].derivative()[var]);
jacs[eq].push_back(schur_jac);
}
// Update right hand side.
vals[eq] = eqs[eq].value().matrix() - B * (invD * eqs[n].value().matrix());
}
// Create return value.
std::vector<ADB> retval;
retval.reserve(num_eq - 1);
for (int eq = 0; eq < num_eq; ++eq) {
if (eq == n) {
continue;
}
retval.push_back(ADB::function(vals[eq], jacs[eq]));
}
return retval;
}
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
{
// The equation to solve for the unknown y (to be recovered) is
// Cx + Dy = b
// y = inv(D) (b - Cx)
// where D is the eliminated block, C is the jacobian of
// the eliminated equation with respect to the
// non-eliminated unknowms, b is the right-hand side of
// the eliminated equation, and x is the partial solution
// of the non-eliminated unknowns.
// We require that D is diagonal.
// Find inv(D).
const M& D = equation.derivative()[n];
if (!isDiagonal(D)) {
OPM_THROW(std::logic_error, "Cannot do Schur complement with respect to non-diagonal block.");
}
V diag = D.diagonal();
Eigen::DiagonalMatrix<double, Eigen::Dynamic> invD = (1.0 / diag).matrix().asDiagonal();
// Build C.
std::vector<M> C_jacs = equation.derivative();
C_jacs.erase(C_jacs.begin() + n);
ADB eq_coll = collapseJacs(ADB::function(equation.value(), C_jacs));
const M& C = eq_coll.derivative()[0];
// Compute value of eliminated variable.
V elim_var = invD * (equation.value().matrix() - C * partial_solution.matrix());
// Find the relevant sizes to use when reconstructing the full solution.
const int nelim = equation.size();
const int npart = partial_solution.size();
assert(C.cols() == npart);
const int full_size = nelim + npart;
int start = 0;
for (int i = 0; i < n; ++i) {
start += equation.derivative()[i].cols();
}
assert(start < full_size);
// Reconstruct complete solution vector.
V sol(full_size);
std::copy_n(partial_solution.data(), start, sol.data());
std::copy_n(elim_var.data(), nelim, sol.data() + start);
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
return sol;
}
bool isDiagonal(const M& matr)
{
M matrix = matr;
matrix.makeCompressed();
for (int k = 0; k < matrix.outerSize(); ++k) {
for (M::InnerIterator it(matrix, k); it; ++it) {
if (it.col() != it.row()) {
// Off-diagonal element.
if (it.value() != 0.0) {
// Nonzero off-diagonal element.
// std::cout << "off-diag: " << it.row() << ' ' << it.col() << std::endl;
return false;
}
}
}
}
return true;
}
} // anonymous namespace
} // namespace Opm