opm-simulators/opm/simulators/flow/NonlinearSolverEbos.cpp

121 lines
3.5 KiB
C++

/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/flow/NonlinearSolverEbos.hpp>
#include <dune/common/fvector.hh>
#include <dune/istl/bvector.hh>
#include <opm/common/ErrorMacros.hpp>
#include <cmath>
#include <stdexcept>
namespace Opm {
namespace detail {
void detectOscillations(const std::vector<std::vector<double>>& residualHistory,
const int it, const int numPhases, const double relaxRelTol,
bool& oscillate, bool& stagnate)
{
// The detection of oscillation in two primary variable results in the report of the detection
// of oscillation for the solver.
// Only the saturations are used for oscillation detection for the black oil model.
// Stagnate is not used for any treatment here.
if (it < 2) {
oscillate = false;
stagnate = false;
return;
}
stagnate = true;
int oscillatePhase = 0;
const auto& F0 = residualHistory[it];
const auto& F1 = residualHistory[it - 1];
const auto& F2 = residualHistory[it - 2];
for (int p = 0; p < numPhases; ++p) {
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
oscillatePhase += (d1 < relaxRelTol) && (relaxRelTol < d2);
// Process is 'stagnate' unless at least one phase
// exhibits significant residual change.
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
}
oscillate = (oscillatePhase > 1);
}
template <class BVector>
void stabilizeNonlinearUpdate(BVector& dx, BVector& dxOld,
const double omega,
NonlinearRelaxType relaxType)
{
// The dxOld is updated with dx.
// If omega is equal to 1., no relaxtion will be appiled.
BVector tempDxOld = dxOld;
dxOld = dx;
switch (relaxType) {
case NonlinearRelaxType::Dampen: {
if (omega == 1.) {
return;
}
for (auto& d : dx) {
d *= omega;
}
return;
}
case NonlinearRelaxType::SOR: {
if (omega == 1.) {
return;
}
auto i = dx.size();
for (i = 0; i < dx.size(); ++i) {
dx[i] *= omega;
tempDxOld[i] *= (1.-omega);
dx[i] += tempDxOld[i];
}
return;
}
default:
OPM_THROW(std::runtime_error, "Can only handle Dampen and SOR relaxation type.");
}
return;
}
template<int Size> using BV = Dune::BlockVector<Dune::FieldVector<double,Size>>;
#define INSTANCE(Size) \
template void stabilizeNonlinearUpdate<BV<Size>>(BV<Size>&, BV<Size>&, \
const double, NonlinearRelaxType);
INSTANCE(1)
INSTANCE(2)
INSTANCE(3)
INSTANCE(4)
INSTANCE(5)
INSTANCE(6)
} // namespace detail
} // namespace Opm